在等腰直角三角形ABC中,AB=AC=4,點O為BC的中點,以O(shè)為圓心作⊙O交BC于點M、N,⊙O與AB、AC相切,切點分別為D、E,則⊙O的半徑和∠MND的度數(shù)分別為( )
| A. | 2,22.5° | B. | 3,30° | C. | 3,22.5° | D. | 2,30° |
考點:
切線的性質(zhì);等腰直角三角形.
分析:
首先連接AO,由切線的性質(zhì),易得OD⊥AB,即可得OD是△ABC的中位線,繼而求得OD的長;根據(jù)圓周角定理即可求出∠MND的度數(shù).
解答:
解:連接OA,
∵AB與⊙O相切,
∴OD⊥AB,
∵在等腰直角三角形ABC中,AB=AC=4,O為BC的中點,
∴AO⊥BC,
∴OD∥AC,
∵O為BC的中點,
∴OD=AC=2;
∵∠DOB=45°,
∴∠MND=∠DOB=22.5°,
故選A.
點評:
此題考查了切線的性質(zhì)、圓周角定理、切線長定理以及等腰直角三角形性質(zhì).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com