(2012•黃岡模擬)如圖,在Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以點(diǎn)O為坐標(biāo)原點(diǎn)建立坐標(biāo)系,設(shè)P,Q分別為AB,OB邊上的動(dòng)點(diǎn),它們同時(shí)分別從點(diǎn)A,O向B點(diǎn)勻速運(yùn)動(dòng),
速度均為1厘米/秒,設(shè)移動(dòng)的時(shí)間為t(0≤t≤4)秒.
(1)求運(yùn)動(dòng)t秒時(shí),P,Q兩點(diǎn)的坐標(biāo).(用含t的式子表示).
(2)若△OPQ的面積為Scm
2,運(yùn)動(dòng)的時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式.當(dāng)t為何值時(shí),S有最大值?最大面積是多少?
(3)當(dāng)t為何值時(shí),直線PQ將△AOB的面積分成1:3兩部分?
(4)按此速度運(yùn)動(dòng)下去,△OPQ能否成為正三角形?若能,求出時(shí)間t;若不能,請(qǐng)說明理由.能否通過改變Q點(diǎn)的速度,使△OPQ成為正三角形?若能,請(qǐng)求出改變后Q的速度和此時(shí)t的值.