【題目】如圖,RtAOB的一條直角邊OB在x軸上,雙曲線y=經(jīng)過斜邊OA的中點C,與另一直角邊交于點D.若SOCD=9,則SOBD的值為

【答案】6

【解析】

試題分析:過雙曲線上任意一點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S是個定值,即S=|k|.

解:如圖,過C點作CEx軸,垂足為E.

RtOAB中,OBA=90°

CEAB,

C為RtOAB斜邊OA的中點C,

CE為RtOAB的中位線,

∵△OEC∽△OBA

=

雙曲線的解析式是y=,即xy=k

SBOD=SCOE=|k|,

SAOB=4SCOE=2|k|,

由SAOB﹣SBOD=SAOD=2SDOC=18,得2k﹣k=18,

k=12,

SBOD=SCOE=k=6,

故答案為:6.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x的圖象與反比例函數(shù)的圖象的一個交點為A(1,m).

(1)求反比例函數(shù)的解析式;

(2)若點P在直線OA上,且滿足PA=2OA,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在ABC中,AB=BC=4,ABC=90°,MAC的中點,點NAB上(不同于A、B),將ANM繞點M逆時針旋轉(zhuǎn)90°A1PM.

(1)畫出A1PM

(2)設(shè)AN=x,四邊形NMCP的面積為y,直接寫出y關(guān)于x的函數(shù)關(guān)系式,并求y的最大或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2x﹣與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,對稱軸與x軸交于點D,點E(4,n)在拋物線上.

(1)求直線AE的解析式;

(2)點P為直線CE下方拋物線上的一點,連接PC,PE.當(dāng)PCE的面積最大時,連接CD,CB,點K是線段CB的中點,點M是CP上的一點,點N是CD上的一點,求KM+MN+NK的最小值;

(3)點G是線段CE的中點,將拋物線y=x2x﹣沿x軸正方向平移得到新拋物線y′,y′經(jīng)過點D,y′的頂點為點F.在新拋物線y′的對稱軸上,是否存在一點Q,使得FGQ為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個紙箱中,裝有紅色、黃色、白色的塑料球共200個這些小球除顏色外其他都完全相同,將球充分搖勻后,從中隨機摸出一個球,記下它的顏色后再放回箱中,不斷重復(fù)這一過程,小明發(fā)現(xiàn)其中摸到白色球、黃色球的頻率分別穩(wěn)定在15%45%,則這個紙箱中紅色球的個數(shù)可能有(

A. 30 B. 80 C. 90 D. 120

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB=900,AC=BC,直線MN經(jīng)過點C,且ADMND,BEMNE

當(dāng)直線MN繞點C旋轉(zhuǎn)到圖1的位置時,求證: CBE;DE=AD+BE;

當(dāng)直線MN繞點C旋轉(zhuǎn)到圖2的位置時,中的結(jié)論還成立嗎?若成立,請給出證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】目前我市校園手機現(xiàn)象越來越受到社會關(guān)注,針對這種現(xiàn)象,我市某中學(xué)九年級數(shù)學(xué)興趣小組的同學(xué)隨機調(diào)查了學(xué)校若干名家長對中學(xué)生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

1)這次調(diào)查的家長總數(shù)為________人.家長表示不贊同的人數(shù)為________

2請在圖①中把條形統(tǒng)計圖補充完整;

3)從這次接受調(diào)查的家長中隨機抽查一個,恰好是贊同的家長的概率是________;

4)求圖②中表示家長無所謂的扇形圓心角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10) 如圖,小明把一張邊長為厘米的正方形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子,

(1)如果要求長方體盒子的底面面積為,求剪去的小正方形邊長為多少?

(2)長方體盒子的側(cè)面積是否可能為?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=+bx+c的圖象經(jīng)過點A(1,0),且當(dāng)x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=x+3與二次函數(shù)y=+bx+c的圖象分別交于B,C兩點,點B在第一象限.

(1)求二次函數(shù)y=+bx+c的表達式;

(2)連接AB,求AB的長;

(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案