【題目】如圖,EF分別是正方形ABCD的邊CDAD上的點(diǎn),且CE=DF,AEBF相交于點(diǎn)O,下列結(jié)論:①AE=BF;②AEBF;③AO=OE;④SAOB=S四邊形DEOF.其中正確的有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

【答案】C

【解析】

根據(jù)正方形的性質(zhì)可得∠BAF=D=90°,AB=AD=CD,然后求出AF=DE,再利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=BF,從而判定出①正確;再根據(jù)全等三角形對(duì)應(yīng)角相等可得∠ABF=DAE,然后證明∠ABF+BAO=90°,再得到∠AOB=90°,從而得出AEBF,判斷②正確;假設(shè)AO=OE,根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì)可得AB=BE,再根據(jù)直角三角形斜邊大于直角邊可得BEBC,即BEAB,從而判斷③錯(cuò)誤;根據(jù)全等三角形的面積相等可得SABF=SADE,然后都減去△AOF的面積,即可得解,從而判斷④正確.

在正方形ABCD中,∠BAF=D=90°AB=AD=CD,

CE=DF

AD-DF=CD-CE,

AF=DE

在△ABF和△DAE中,

ABAD

BAF=∠D90°

AFDE

∴△ABF≌△DAESAS),

AE=BF,故①正確;

ABF=DAE,

∵∠DAE+BAO=90°

∴∠ABF+BAO=90°,

在△ABO中,∠AOB=180°-(∠ABF+BAO=180°-90°=90°,

AEBF,故②正確;

假設(shè)AO=OE,

AEBF(已證),

AB=BE(線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等),

∵在RtBCE中,BEBC,

ABBC,這與正方形的邊長(zhǎng)AB=BC相矛盾,

所以,假設(shè)不成立,AO≠OE,故③錯(cuò)誤;

∵△ABF≌△DAE,

SABF=SDAE

SABF-SAOF=SDAE-SAOF,

SAOB=S四邊形DEOF,故④正確;

綜上所述,正確的有3個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩輛汽車(chē)同時(shí)從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車(chē)與甲地的距離,t(分)表示汽車(chē)行駛的時(shí)間,如圖,L1,L2分別表示兩輛汽車(chē)的st的關(guān)系.

(1)L1表示哪輛汽車(chē)到甲地的距離與行駛時(shí)間的關(guān)系?

(2)汽車(chē)B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車(chē)的st的關(guān)系式.

(4)2小時(shí)后,兩車(chē)相距多少千米?

(5)行駛多長(zhǎng)時(shí)間后,A、B兩車(chē)相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,每個(gè)小正方形的邊長(zhǎng)為1

1)求四邊形ABCD的面積和周長(zhǎng);

2)∠BCD是直角嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】算24點(diǎn)游戲是一種使用撲克牌來(lái)進(jìn)行的益智類(lèi)游戲,游戲內(nèi)容是:從一副撲克牌中抽去大小王剩下52張,任意抽取4張牌,把牌面上的數(shù)運(yùn)用你所學(xué)過(guò)的加、減、乘、除、乘方運(yùn)算得出24.每張牌都必須使用一次,但不能重復(fù)使用.

(1)如圖1,在玩“24點(diǎn)”游戲時(shí),小明抽到以下4張牌:

請(qǐng)你幫他寫(xiě)出運(yùn)算結(jié)果為24的算式:(寫(xiě)出2個(gè));   、   ;

(2)如圖2,如果、表示正, 表示負(fù),J表示11點(diǎn),Q表示12點(diǎn).請(qǐng)你用下列4張牌表示的數(shù)寫(xiě)出運(yùn)算結(jié)果為24的算式(寫(xiě)出1個(gè)):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016湖南省益陽(yáng)市)如圖①,在ABC中,∠ACB=90°,B=30°,AC=1,DAB的中點(diǎn),EFACD的中位線,四邊形EFGHACD的內(nèi)接矩形(矩形的四個(gè)頂點(diǎn)均在ACD的邊上).

(1)計(jì)算矩形EFGH的面積;

(2)將矩形EFGH沿AB向右平移,F落在BC上時(shí)停止移動(dòng).在平移過(guò)程中,當(dāng)矩形與CBD重疊部分的面積為時(shí),求矩形平移的距離;

(3)如圖③,將(2)中矩形平移停止時(shí)所得的矩形記為矩形E1F1G1H1,將矩形E1F1G1H1G1點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn),當(dāng)H1落在CD上時(shí)停止轉(zhuǎn)動(dòng),旋轉(zhuǎn)后的矩形記為矩形E2F2G1H2,設(shè)旋轉(zhuǎn)角為α,求cosα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了組織一次球類(lèi)對(duì)抗賽,在本校隨機(jī)抽取了若干名學(xué)生,對(duì)他們每個(gè)人最喜歡的一項(xiàng)球類(lèi)運(yùn)動(dòng)進(jìn)行了統(tǒng)計(jì),將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依據(jù)以上的信息回答下列問(wèn)題:

1)求本次被調(diào)查的學(xué)生人數(shù);

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)若全校有4000名學(xué)生,請(qǐng)你估計(jì)該校最喜歡籃球和足球運(yùn)動(dòng)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行全體學(xué)生“漢字聽(tīng)寫(xiě)”比賽,每位學(xué)生聽(tīng)寫(xiě)漢字39個(gè).隨機(jī)抽取了部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,繪制成如下的圖表.

根據(jù)以上信息完成下列問(wèn)題:

1統(tǒng)計(jì)表中的m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖;

2扇形統(tǒng)計(jì)圖中“C組”所對(duì)應(yīng)的圓心角的度數(shù)是 ;

3已知該校共有900名學(xué)生,如果聽(tīng)寫(xiě)正確的字的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽(tīng)寫(xiě)比賽不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某條道路上通行車(chē)輛限速60千米/時(shí),道路的AB段為監(jiān)測(cè)區(qū),監(jiān)測(cè)點(diǎn)P到AB的距離PH為50米(如圖).已知點(diǎn)P在點(diǎn)A的北偏東45°方向上,且在點(diǎn)B的北偏西60°方向上,點(diǎn)B在點(diǎn)A的北偏東75°方向上,那么車(chē)輛通過(guò)AB段的時(shí)間在多少秒以內(nèi),可認(rèn)定為超速?(參考數(shù)據(jù):≈1.7,≈1.4).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.

(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?

(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?

查看答案和解析>>

同步練習(xí)冊(cè)答案