【題目】如圖,在ABC中,點(diǎn)BDAC于點(diǎn)DDEAB于點(diǎn)E,BD2BCBE

1)求證:BCD∽△BDE

2)如果BC10,AD6,求AE的值.

【答案】1)見解析;(2AE3.6

【解析】

1)由BD2BCBE得到,則根據(jù)直角三角形相似的判定方法可得到結(jié)論;

2)利用射影定理得到BD2BEBA,再根據(jù)BD2BCBE,則有BABC10,再利用射影定理得到AD2AEAB,于是可求出AE的長.

1)證明:∵點(diǎn)BDAC于點(diǎn)D,DEAB于點(diǎn)E

∴∠BDC90°,∠BED90°,

BD2BCBE,

,

∴△BCD∽△BDE

2)解:∵BD2BEBA,BD2BCBE,

BABC10,

AD2AEAB,

AE3.6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】順次連接對(duì)角線相等的四邊形各邊中點(diǎn),所得四邊形是( )

A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(4,4),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)Dx軸上(在點(diǎn)O右側(cè))任意一點(diǎn),以AD為邊向右側(cè)作正方形ADEF,連接BF,設(shè)點(diǎn)D的坐標(biāo)為(t0).

(1)求證:AOD≌△ABF;

(2)求點(diǎn)E的坐標(biāo)(用含有t的代數(shù)式來表示);

(3)當(dāng)DBE是等腰三角形時(shí),請(qǐng)直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為6,點(diǎn)邊的中點(diǎn),連接與對(duì)角線交于點(diǎn),連接并延長,交于點(diǎn),連接于點(diǎn),連接。以下結(jié)論:①;②;③;④。其中正確的結(jié)論是(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)E在邊BC上,EFAEAD于點(diǎn)F,若AB2,BC7BE5,則FD的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于任意的函數(shù)值,都滿足,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個(gè)單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時(shí),滿足?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC中,∠ACB90°.D為射線BC上一動(dòng)點(diǎn).連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至點(diǎn)E,連接AE、DE.點(diǎn)M、N分別是AB、DE的中點(diǎn),連接MN

(1)如圖1,點(diǎn)D在線段BC上.

猜想MNAB的位置關(guān)系,并證明你的猜想;

連接EB,猜想BEBC的位置關(guān)系;

(2)在圖2中,若點(diǎn)D在線段BC的延長線上,BEBC的位置關(guān)系是否改變?請(qǐng)你補(bǔ)全圖形后,證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上一點(diǎn),和過點(diǎn)的切線互相垂直,垂足為,于點(diǎn)

1)求證:平分

2)連接,若,,求出的直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,ABC的三個(gè)頂點(diǎn)分別為A(-3,4)B(-5,1),C(-1,2).

1)畫出ABC關(guān)于原點(diǎn)對(duì)稱的A1B1C1,并寫出點(diǎn)B1的坐標(biāo);

2)畫出ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后的A2B2C2,并寫出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案