【題目】如圖,四邊形ABCD中,點M、N分別在ABBC上,將BMN沿MN翻折,得FMN,若MFAD,FNDC,則∠D的度數(shù)為_________

【答案】90

【解析】首先利用平行線的性質得出∠BNF=100°,∠FNB=70°,再利用翻折變換的性質得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,進而求出∠B的度數(shù)以及得出∠D度數(shù).

解:∵MF∥AD,F(xiàn)N∥DC,∠A=100°,∠C=70°,

∴∠BMF=100°,∠FNB=70°,

∵將△BMN沿MN翻折,得△FMN,

∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,

∴∠F=∠B=180°-50°-35°=95°

∴∠D=360°-100°-70°-90°=95°.

“點睛”此題主要考查了平行線的性質以及多邊形內角和定理以及翻折變換的性質,得出∠FMN=∠BMN,∠FNM=∠MNB是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】三角形的三個內角之比為1∶3∶5,那么這個三角形的最大內角為_______;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a、b為有理數(shù),若a2=b2,則a、b的關系是

A.相等B.互為相反數(shù)C.互為倒數(shù)D.相等或互為相反數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列分解因式正確的是(  )

A. m4﹣8m2+64=(m2﹣8)2

B. x4﹣y4=(x2+y2)(x2﹣y2

C. 4a2﹣4a+1=(2a﹣1)2

D. a(x﹣y)﹣b(y﹣x)=(x﹣y)(a﹣b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=ACA=120,BC=6cmAB的垂直平分線交BC于點M,交AB于點EAC的垂直平分線交BC于點N,交AC于點F,則MN的長為(

A. 1.5cm B. 2cm C. 2.5cm D. 3cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。

A. (x34=x7 B. ﹣(﹣x)2x3=﹣x5 C. x+x2=x3 D. (x+y)2=x2+y2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知xm=2,xn=3,則x2m+n=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸相交于點A、B,且過點C(4,3).

(1)求的值和該拋物線頂點P的坐標;

(2)將該拋物線向左平移,記平移后拋物線的頂點為P′,當四邊形APPB為平行四邊形時,求平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,筆直的公路上A、B兩點相距25km,C、D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個土特產品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應建在離A點多遠處?

查看答案和解析>>

同步練習冊答案