【題目】如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?
【答案】收購站E應(yīng)建在離A點(diǎn)10km處.
【解析】試題分析:根據(jù)C、D兩村到E站的距離相等,可得DE=CE,在Rt△AED和Rt△EBC中,根據(jù)勾股定理可得AE2+AD2=BE2+BC2,設(shè)AE=x,則BE=25﹣x,列出方程,解方程求得x的值,即可得收購站E離A點(diǎn)的距離.
試題解析:
∵使得C,D兩村到E站的距離相等.
∴DE=CE,
∵DA⊥AB于A,CB⊥AB于B,
∴∠A=∠B=90°,
∴AE2+AD2=DE2,BE2+BC2=EC2,
∴AE2+AD2=BE2+BC2,
設(shè)AE=x,則BE=AB﹣AE=(25﹣x),
∵DA=15km,CB=10km,
∴x2+152=(25﹣x)2+102,
解得:x=10,
∴AE=10km,
∴收購站E應(yīng)建在離A點(diǎn)10km處.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,點(diǎn)M、N分別在AB、BC上,將BMN沿MN翻折,得FMN,若MF∥AD,FN∥DC,則∠D的度數(shù)為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)多項(xiàng)式除以多項(xiàng)式a2+4a﹣3,所得商式是2a+1,余式為2a+8,求這個(gè)多項(xiàng)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點(diǎn)D,過D作⊙O的切線交CB的延長線于點(diǎn)E.若AB=4,∠E=75°,則CD的長為( 。
A. B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF的平分線交于點(diǎn)E,求∠AEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把多項(xiàng)式4x2y﹣4xy2﹣x3分解因式的結(jié)果是( 。
A.4xy(x﹣y)﹣x3
B.﹣x(x﹣2y)2
C.x(4xy﹣4y2﹣x2)
D.﹣x(﹣4xy+4y2+x2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠ABC的平分線與AC相交于點(diǎn)D,與⊙O過點(diǎn)A的切線相交于點(diǎn)E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光體育活動(dòng)時(shí)間,小亮、小瑩、小芳和大剛到學(xué)校乒乓球室打乒乓球,當(dāng)時(shí)只有一副空球桌,他們只能選兩人打第一場(chǎng).
(1)如果確定小亮打第一場(chǎng),再從其余三人中隨機(jī)選取一人打第一場(chǎng),求恰好選中大剛的概率;
(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場(chǎng).游戲規(guī)則是:三人同時(shí)伸“手心、手背”中的一種手勢(shì),如果恰好有兩人伸出的手勢(shì)相同,那么這兩人上場(chǎng),否則重新開始,這三人伸出“手心”或“手背”都是隨機(jī)的,請(qǐng)用畫樹狀圖的方法求小瑩和小芳打第一場(chǎng)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com