【題目】閱讀材料,解答下列問題:
例:當(dāng)a=5,則|a|=|5|=5,故此時(shí)a的絕對值是它本身;當(dāng)a=0時(shí),|a|=0,故此時(shí)a的絕對值是0;當(dāng)a<0時(shí),如a=﹣5,則|a|=|-5|=﹣(-5)=5,故此時(shí)a的絕對值是它的相反數(shù).請仿照圖例中的分類討論,解決下面的問題:
(1)|﹣4+5|= ;|﹣﹣3|= ;
(2)如果|x+1|=2,求x的值;
(3)若數(shù)軸上表示數(shù)a的點(diǎn)位于﹣3與5之間,求|a+3|+|a﹣5|的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E是邊AC上一點(diǎn),線段BE垂直于∠BAC的平分線于點(diǎn)D,點(diǎn)M為邊BC的中點(diǎn),連接DM.
(1)求證: DM=CE;
(2)若AD=6,BD=8,DM=2,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:
材料1:數(shù)學(xué)上有一種根號內(nèi)又帶根號的數(shù),它們能通過完全平方式及二次根式的性質(zhì)化去一層(或多層)根號.如: ;
材料2: 配方法是初中數(shù)學(xué)思想方法中的一種重要的解題方法。配方法的最終目的就是配成完全平方式,利用完全平方式來解決問題。它的應(yīng)用非常廣泛,在解方程、求最值、證明等式、化簡根式、因式分解等方面都經(jīng)常用到。
如:
∵,∴即
∴的最小值為1.
根據(jù)以上材料解決下列問題:
(1)填空:=________________;=______________;
(2)求的最小值;
(3)已知,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:① 平方等于64的數(shù)是8;② 若a,b互為相反數(shù),ab≠0,則;③ 若,則的值為負(fù)數(shù);④ 若ab≠0,則的取值在0,1,2,-2這四個(gè)數(shù)中,不可取的值是0.正確的個(gè)數(shù)為( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)A1,B1,C1分別是BC、AC、AB的中點(diǎn),A2,B2,C2分別是B1C1,A1C1,A1B1的中點(diǎn),依此類推….若△ABC的周長為1,則△AnBnCn的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AD是△ABC的中線,E為AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE延長線于點(diǎn)F,連接CF.
(1)如圖1,求證:四邊形ADCF是平行四邊形;
(2)如圖2.連接CE,在不添加任何助線的情況下,請直接寫出圖2中所有與△BEC面積相等的三角形。
圖1 圖2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:與拋物線:y=ax2+bx+c交于A(2,3)、B(m,2)、C(﹣3,n)三點(diǎn).
(1)求雙曲線與拋物線的解析式;
(2)在平面直角坐標(biāo)系中描出點(diǎn)A、點(diǎn)B、點(diǎn)C,并求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,連接對角線AC、BD,將△ABC沿BC方向平移,使點(diǎn)B移到點(diǎn)C,得到△DCE.
(1)求證:△ACD≌△EDC;
(2)請?zhí)骄?/span>△BDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究:
如圖,拋物線y=x2﹣x﹣4與x軸交與A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè)),與y軸交于點(diǎn)C,連接BC,以BC為一邊,點(diǎn)O為對稱中心作菱形BDEC,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A,B,C的坐標(biāo).
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l分別交BD,BC于點(diǎn)M,N.試探究m為何值時(shí),四邊形CQMD是平行四邊形,此時(shí),請判斷四邊形CQBM的形狀,并說明理由.
(3)當(dāng)點(diǎn)P在線段EB上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△BDQ為直角三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com