【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點,BG與⊙O相切于點B,交AC的延長線于點D(點D在線段BG上),AC = 8,tanBDC =

1)求⊙O的直徑;

(2)當(dāng)DG=時,過G,交BA的延長線于點E,說明EG與⊙O相切.

【答案】110;(2)詳見解析

【解析】

1)先根據(jù)圓周角定理、圓的切線的性質(zhì)得出,,再根據(jù)角互余的定義得出,然后根據(jù)正切的定義可求出BC的長,最后利用勾股定理即可得;

2)如圖(見解析),先根據(jù)平行線的性質(zhì)得出,,,再根據(jù)中位線的判定與性質(zhì)得出,然后根據(jù)正切的定義、勾股定理求出的長,從而可得MH的長,最后根據(jù)線段的和差求出為圓O的半徑,根據(jù)圓的切線的判定即可得證.

1是圓O的直徑

是圓O的切線

,即

中,,即

解得

即圓O的直徑為10;

2)如圖,過點DF, 過點OH,交ADM

,,

由(1)可知,,即

OAB的中點

的中位線

中,,即

設(shè),則

解得

,即OH為圓O的半徑

EG與圓O相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB4BC6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點Ax軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.

(1)當(dāng)∠OAD30°時,求點C的坐標(biāo);

(2)設(shè)AD的中點為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時,求OA的長;

(3)當(dāng)點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是小莉在一次放風(fēng)箏活動中某時段的示意圖,她在A處時的風(fēng)箏線(整個過程中風(fēng)箏線近似地看作直線)與水平線構(gòu)成37°角,線段AA1表示小紅身高1.5米.當(dāng)她從點A跑動4米到達點B處時,風(fēng)箏線與水平線構(gòu)成60°角,此時風(fēng)箏到達點E處,風(fēng)箏的水平移動距離CF8米,這一過程中風(fēng)箏線的長度保持不變,求風(fēng)箏原來的高度C1D

(參考數(shù)據(jù):sin37°≈0.6cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若兩條拋物線在x軸上經(jīng)過兩個相同點,那么我們稱這兩條拋物線是“同交點拋物線”,在x軸上經(jīng)過的兩個相同點稱為“同交點”,已知拋物線y=x2+bx+c經(jīng)過(2,0)、(40),且一條與它是“同交點拋物線”的拋物線y=ax2+ex+f經(jīng)過點(3,3)

1)求b、ca的值;

2)已知拋物線y=x2+2x+3與拋物線yn=x2xnn為正整數(shù))

①拋物線y和拋物線yn是不是“同交點拋物線”?若是,請求出它們的“同交點”,并寫出它們一條相同的圖像性質(zhì);若不是,請說明理由.

②當(dāng)直線y=x+m與拋物線y、yn,相交共有4個交點時,求m的取值范圍.

③若直線y=kk<0)與拋物線y=x2+2x+3與拋物線yn =x2xn n為正整數(shù))共有4個交點,從左至右依次標(biāo)記為點A、點B、點C、點D,當(dāng)AB=BC=CD時,求出k、n之間的關(guān)系式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

如果函數(shù)滿足:對于自變量的取值范圍內(nèi)的任意,

1)若,都有,則稱是增函數(shù);

2)若,都有,則稱是減函數(shù).

例題:證明函數(shù)是減函數(shù).

證明:設(shè),

,∴.∴.即

.∴函數(shù))是減函數(shù).

根據(jù)以上材料,解答下面的問題:

己知函數(shù)),

1)計算:_______,_______

(2)猜想:函數(shù))是_______函數(shù)(填“增”或“減”);

3)請仿照例題證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,分別以點A、B為圓心,AB長為半徑畫圓弧,兩圓弧交于點C,再以點C為圓心,以AB長為半徑畫圓弧交AC的延長線于點D,連結(jié)BD、BC,則的面積是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點P從點B出發(fā),沿BC以每秒2個單位長度的速度向終點C運動,同時點Q從點C出發(fā),沿折線以每秒5個單位長度的速度運動,到達點A時,點Q停止1秒,然后繼續(xù)運動.分別連結(jié)PQBQ.設(shè)的面積為S,點P的運動時間為秒.

1)求點ABC之間的距離.

2)當(dāng)時,求的值.

3)求S之間的函數(shù)關(guān)系式.

4)當(dāng)線段PQ的某條邊垂直時,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形中,分別是邊、上的動點,且,中點,是邊上的一個動點,則的最小值是(

A.10B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的曲邊三角形可按下述方法作出:作等邊三角形;分別以點,,為圓心,以的長為半徑作,,.三段弧所圍成的圖形就是一個曲邊三角形,如果一個曲邊三角形的周長為,那么這個曲邊三角形的面積是___________

查看答案和解析>>

同步練習(xí)冊答案