【題目】已知一個(gè)口袋中裝有六個(gè)完全相同的小球,小球上分別標(biāo)有1,2,5,7,8,13六個(gè)數(shù),攪勻后一次從中摸出一個(gè)小球,將小球上的數(shù)記為m,則使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過(guò)一、二、四象限且關(guān)于x的分式方程=3x+的解為整數(shù)的概率是( 。
A.B.C.D.
【答案】B
【解析】
求出使得一次函數(shù)y=(-m+1)x+11-m經(jīng)過(guò)一、二、四象限且關(guān)于x的分式方程=3x+的解為整數(shù)的數(shù),然后直接利用概率公式求解即可求得答案.
解:∵一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過(guò)一、二、四象限,﹣m+1<0,11﹣m>0,
∴1<m<11,
∴符合條件的有:2,5,7,8,
把分式方程=3x+去分母,整理得:3x2﹣16x﹣mx=0,
解得:x=0,或x=,
∵x≠8,
∴≠8,
∴m≠8,
∵分式方程=3x+的解為整數(shù),
∴m=2,5,
∴使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過(guò)一、二、四象限且關(guān)于x的分式方程=3x+的解為整數(shù)的整數(shù)有2,5,
∴使得一次函數(shù)y=(﹣m+1)x+11﹣m經(jīng)過(guò)一、二、四象限且關(guān)于x的分式方程=3x+的解為整數(shù)的概率為=;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B在雙曲線y=(x<0)上,連接OA、AB,以OA、AB為邊作□OABC.若點(diǎn)C恰落在雙曲線y=(x>0)上,此時(shí)□OABC的面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司經(jīng)銷的一種產(chǎn)品每件成本為40元,要求在90天內(nèi)完成銷售任務(wù).已知該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
x+50 | 90 |
任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)銷售員小王90天內(nèi)日銷售量p(件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系p=﹣2x+200.設(shè)小王第x天銷售利潤(rùn)為W元.
(1)直接寫(xiě)出W與x之間的函數(shù)關(guān)系式,井注明自變量x的取值范圍;
(2)求小生第幾天的銷售量最大?最大利潤(rùn)是多少?
(3)任務(wù)完成后,統(tǒng)計(jì)發(fā)現(xiàn)平均每個(gè)銷售員每天銷售利潤(rùn)為4800公司制定如下獎(jiǎng)勵(lì)制度:如果一個(gè)銷售員某天的銷售利潤(rùn)超過(guò)該平均值,則該銷售員當(dāng)天可獲得200元獎(jiǎng)金.請(qǐng)計(jì)算小王一共可獲得多少元獎(jiǎng)金?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)△ABC和△CDE是兩個(gè)等腰直角三角形,如圖1,其中∠ACB=∠DCE=90°,連結(jié)AD、BE,求證:△ACD≌△BCE.
(2)△ABC和△CDE是兩個(gè)含30°的直角三角形,其中∠ACB=∠DCE=90°,∠CAB=∠CDE=30°,CD<AC,△CDE從邊CD與AC重合開(kāi)始繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一定角度α(0°<α<180°);
①如圖2,DE與BC交于點(diǎn)F,與AB交于點(diǎn)G,連結(jié)AD,若四邊形ADEC為平行四邊形,求的值;
②若AB=10,DE=8,連結(jié)BD、BE,當(dāng)以點(diǎn)B、D、E為頂點(diǎn)的三角形是直角三角形時(shí),求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、、、、五個(gè)點(diǎn),拋物線經(jīng)過(guò)其中的三個(gè)點(diǎn).
(1)求證:點(diǎn)、不能同時(shí)在拋物線上;
(2)點(diǎn)在拋物線上嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,⊙O的半徑為2,點(diǎn)P是AB邊上的動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的一條切線PC(點(diǎn)C為切點(diǎn)),則線段PC長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受“新冠”疫情影響,全國(guó)中小學(xué)延遲開(kāi)學(xué),很多學(xué)校都開(kāi)展起了“線上教學(xué)”,市場(chǎng)上對(duì)手寫(xiě)板的需求激增.重慶某廠家準(zhǔn)備3月份緊急生產(chǎn)A,B兩種型號(hào)的手寫(xiě)板,若生產(chǎn)20個(gè)A型號(hào)和30個(gè)B型號(hào)手寫(xiě)板,共需要投入36000元;若生產(chǎn)30個(gè)A型號(hào)和20個(gè)B型號(hào)手寫(xiě)板,共需要投入34000元.
(1)請(qǐng)問(wèn)生產(chǎn)A,B兩種型號(hào)手寫(xiě)板,每個(gè)各需要投入多少元的成本?
(2)經(jīng)測(cè)算,生產(chǎn)的A型號(hào)手寫(xiě)板每個(gè)可獲利200元,B型號(hào)手寫(xiě)板每個(gè)可獲利400元,該廠家準(zhǔn)備用10萬(wàn)元資金全部生產(chǎn)這兩種手寫(xiě)板,總獲利w元,設(shè)生產(chǎn)了A型號(hào)手寫(xiě)板a個(gè),求w關(guān)于a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若要求生產(chǎn)A型號(hào)手寫(xiě)板的數(shù)量不能少于B型號(hào)手寫(xiě)板數(shù)量的2倍,請(qǐng)你設(shè)計(jì)出總獲利最大的生產(chǎn)方案,并求出最大總獲利.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在中,弦,連接、;
(1)如圖1,求證:;
(2)如圖2,在線段上取點(diǎn),連接并延長(zhǎng)交于點(diǎn),交于點(diǎn),,連接、、,,求的正切值;
(3)如圖3,在(2)的條件下,交于點(diǎn),,,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的中線P是線段AD上的一點(diǎn)(不與點(diǎn)A、D重合),連接PB、PC,E、F、G、H分別是AB、AC、PB、PC的中點(diǎn),AD與EF交于點(diǎn)M;
(1)如圖1,當(dāng)AB=AC時(shí),求證:四邊形EGHF是矩形;
(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)M重合時(shí),在不添加任何輔助線的條件下,寫(xiě)出所有與△BPE面積相等的三角形(不包括△BPE本身).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com