如圖,已知AB,AC分別是⊙O的直徑和弦,點(diǎn)G為
AC
上一點(diǎn),GE⊥AB,垂足為點(diǎn)E,交AC于點(diǎn)D,過(guò)點(diǎn)C的切線與AB的延長(zhǎng)線交于點(diǎn)F,與EG的延長(zhǎng)線交于點(diǎn)P,連接AG.
(1)求證:△PCD是等腰三角形;
(2)若點(diǎn)D為AC的中點(diǎn),且∠F=30°,BF=2,求△PCD的周長(zhǎng)和AG的長(zhǎng).
考點(diǎn):切線的性質(zhì),等腰三角形的判定,垂徑定理,圓周角定理,相似三角形的判定與性質(zhì)
專(zhuān)題:證明題
分析:(1)連結(jié)OC,根據(jù)切線的性質(zhì)得∠OCP=90°,即∠1+∠PCD=90°,由GE⊥AB得∠GEA=90°,則∠2+∠ADE=90°,利用∠1=∠2得到∠PCD=∠ADE,根據(jù)對(duì)頂角相等得∠ADE=∠PDC,所以∠PCD=∠PDC,于是根據(jù)等腰三角形的判定定理得到△PCD是等腰三角形;
(2)連結(jié)OD,BG,在Rt△COF中根據(jù)含30度的直角三角形三邊的關(guān)系可計(jì)算出OC=2,由于∠FOC=90°-∠F=60°,根據(jù)三角形外角性質(zhì)可計(jì)算出∠1=∠2=30°,則∠PCD=90°-∠1=60°,可判斷△PCD為等邊三角形;再由D為AC的中點(diǎn),根據(jù)垂徑定理得到OD⊥AC,AD=CD,在Rt△OCD中,可計(jì)算出OD=
1
2
OC=1,CD=
3
OD=
3
,所以△PCD的周長(zhǎng)為3
3
;然后在Rt△ADE中,計(jì)算出DE=
1
2
AD=
3
2
,AE=
3
DE=
3
2
,根據(jù)圓周角定理由AB為直徑得到∠AGB=90°,再證明Rt△AGE∽R(shí)t△ABG,利用相似比可計(jì)算出AG.
解答:(1)證明:連結(jié)OC,如圖,
∵PC為⊙O的切線,
∴OC⊥PC,
∴∠OCP=90°,即∠1+∠PCD=90°,
∵GE⊥AB,
∴∠GEA=90°,
∴∠2+∠ADE=90°,
∵OA=OC,
∴∠1=∠2,
∴∠PCD=∠ADE,
而∠ADE=∠PDC,
∴∠PCD=∠PDC,
∴△PCD是等腰三角形;

(2)解:連結(jié)OD,BG,如圖,
在Rt△COF中,∠F=30°,BF=2,
∴OF=2OC,即OB+2=2OC,
而OB=OC,
∴OC=2,
∵∠FOC=90°-∠F=60°,
∴∠1=∠2=30°,
∴∠PCD=90°-∠1=60°,
∴△PCD為等邊三角形,
∵D為AC的中點(diǎn),
∴OD⊥AC,
∴AD=CD,
在Rt△OCD中,OD=
1
2
OC=1,
CD=
3
OD=
3
,
∴△PCD的周長(zhǎng)為3
3

在Rt△ADE中,AD=CD=
3
,
∴DE=
1
2
AD=
3
2
,
AE=
3
DE=
3
2
,
∵AB為直徑,
∴∠AGB=90°,
而∠GAE=∠BAG,
∴Rt△AGE∽R(shí)t△ABG,
∴AG:AB=AE:AG,
∴AG2=AE•AB=
3
2
×4=6,
∴AG=
6
點(diǎn)評(píng):本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.也考查了等腰三角形的判定、垂徑定理、圓周角定理和三角形相似的判定與性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

“節(jié)能環(huán)保,低碳生活”是我們倡導(dǎo)的一種生活方式.某家電商場(chǎng)計(jì)劃用11.8萬(wàn)元購(gòu)進(jìn)節(jié)能型電視機(jī)、洗衣機(jī)和空調(diào)共40臺(tái).三種家電的進(jìn)價(jià)及售價(jià)如表.
(1)在不超出現(xiàn)有資金的前提下,若購(gòu)進(jìn)電視機(jī)的數(shù)量和洗衣機(jī)的數(shù)量相同,空調(diào)的數(shù)量不超過(guò)電視機(jī)數(shù)量的三倍,請(qǐng)問(wèn)商場(chǎng)有哪幾種進(jìn)貨方案?
(2)在(1)的條件下,商家要想得到最高的利潤(rùn),應(yīng)選擇哪種方案?
  進(jìn)價(jià)(元/臺(tái)) 售價(jià)(元/臺(tái))
電視機(jī) 5 000 5 500
洗衣機(jī) 2 000 2 160
空  調(diào) 2 400 2 700

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)D是△ABC的邊AB上的一點(diǎn),CN∥AB,DN交AC于點(diǎn)P,若PA=PC.求證:CD=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖(圖略),從一副撲克牌中選取紅桃10,方塊10,梅花5,黑桃8四張撲克牌,洗勻后正面朝下放在桌子上,甲先從中任意抽取一張后,乙再?gòu)氖S嗟娜龔垞淇伺浦腥我獬槿∫粡,用?huà)樹(shù)形圖或列表的方法,求甲乙兩人抽取的撲克牌的點(diǎn)數(shù)都是10的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

Rt△ABC中,∠C=90°,點(diǎn)D,E分別是邊AC,BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖①,且∠α=50°,則∠1+∠2=
 
;
(2)若點(diǎn)P在斜邊AB上運(yùn)動(dòng),如圖②,則∠α、∠1、∠2之間的關(guān)系為
 
;
(3)如圖③,若點(diǎn)P在斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),請(qǐng)直接寫(xiě)出∠α、∠1、∠2之間的關(guān)系:
 
;
(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外(只需研究圖④情形),則∠α、∠1、∠2之間有何關(guān)系?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

線段AB=10cm,點(diǎn)C為線段AB的黃金分割點(diǎn),則AC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:
64
-
3-64
+
327
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若|x-y+1|+(2-x)2=0,則x=
 
,y=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正比例函數(shù)y1=k1x與反比例函數(shù)y2=
k2
x
的圖象交于A、B兩點(diǎn),根據(jù)圖象可直接寫(xiě)出當(dāng)y1>y2時(shí),x的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案