Rt△ABC中,∠C=90°,點(diǎn)D,E分別是邊AC,BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖①,且∠α=50°,則∠1+∠2=
 

(2)若點(diǎn)P在斜邊AB上運(yùn)動(dòng),如圖②,則∠α、∠1、∠2之間的關(guān)系為
 

(3)如圖③,若點(diǎn)P在斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),請(qǐng)直接寫出∠α、∠1、∠2之間的關(guān)系:
 
;
(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外(只需研究圖④情形),則∠α、∠1、∠2之間有何關(guān)系?并說明理由.
考點(diǎn):三角形內(nèi)角和定理,三角形的外角性質(zhì)
專題:探究型
分析:(1)連接PC,根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可;
(2)利用(1)中所求得出答案即可;
(3)利用三角外角的性質(zhì)分三種情況討論即可;
(4)利用三角形內(nèi)角和定理以及鄰補(bǔ)角的性質(zhì)可得出.
解答:解:(1)如圖,連接PC,
∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠DPE=∠α=50°,∠C=90°,
∴∠1+∠2=50°+90°=140°,
故答案為:140°;

(2)連接PC,
∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠C=90°,∠DPE=∠α,
∴∠1+∠2=90°+∠α;
故答案為:∠1+∠2=90°+∠α;

(3)如圖1,
∵∠2=∠C+∠1+∠α,
∴∠2-∠1=90°+∠α;
如圖2,∠α=0°,∠2=∠1+90°;
如圖3,∵∠2=∠1-∠α+∠C,
∴∠1-∠2=∠α-90°.

故答案為;∠2-∠1=90°+∠α;∠2=∠1+90°;∠1-∠2=∠α-90°.

(4)

∵∠PFD=∠EFC,
∴180°-∠PFD=180°-∠EFC,
∴∠α+180°-∠1=∠C+180°-∠2,
∴∠2=90°+∠1-α.
故答案為:∠2=90°+∠1-α.
點(diǎn)評(píng):本題考查了三角形內(nèi)角和定理和外角的性質(zhì)、對(duì)頂角相等的性質(zhì),熟練利用三角形外角的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD.請(qǐng)你分別探索下列三個(gè)圖形中∠P與∠A,∠C的關(guān)系,寫出三個(gè)圖形的猜想,并任選一個(gè)圖形的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在邊長(zhǎng)為8的正方形ABCD中,點(diǎn)O為AD上一動(dòng)點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.
(1)圖中是否存在與△ODM相似的三角形?若存在,請(qǐng)找出并給于證明.
(2)設(shè)DM=x,OA=R,求R關(guān)于x 的函數(shù)關(guān)系式;是否存在整數(shù)R,使得利用正方形ABCD內(nèi)部的扇形OAM圍成的圓錐地面周長(zhǎng)可以為4π?若存在請(qǐng)求出此時(shí)DM的長(zhǎng);不存在,請(qǐng)說明理由.
(3)在動(dòng)點(diǎn)O逐漸向點(diǎn)D運(yùn)動(dòng)(OA逐漸增大)的過程中,△CMN的周長(zhǎng)如何變化?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示的方格地面上,標(biāo)有編號(hào)A、B、C的3個(gè)小方格地面是空地,另外6個(gè)小方格地面是草坪,除此以外小方格地面完全相同.
(1)一只自由飛行的鳥,將隨意地落在圖中的方格地面上,問小鳥落在草坪上的概率是多少?
(2)現(xiàn)從3個(gè)小方格空地中任意選取2個(gè)種植草坪,則剛好選取A和B的2個(gè)小方格空地種植草坪的概率是多少(用樹形圖或列表法求解)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,∠BAC與∠GCA互補(bǔ),∠1=∠2,若∠E=46°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB,AC分別是⊙O的直徑和弦,點(diǎn)G為
AC
上一點(diǎn),GE⊥AB,垂足為點(diǎn)E,交AC于點(diǎn)D,過點(diǎn)C的切線與AB的延長(zhǎng)線交于點(diǎn)F,與EG的延長(zhǎng)線交于點(diǎn)P,連接AG.
(1)求證:△PCD是等腰三角形;
(2)若點(diǎn)D為AC的中點(diǎn),且∠F=30°,BF=2,求△PCD的周長(zhǎng)和AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,∠ABO+∠ADO=90°,且OB=OA,則四邊形ABCD是
 
形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

點(diǎn)M(3,2)向右平移
2
個(gè)單位,向下平移
3
個(gè)單位后得點(diǎn)N,則點(diǎn)N的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直角梯形ABCD的一條對(duì)角線把梯形分為一個(gè)直角三角形和一個(gè)以BC為底的等腰三角形.若梯形上底為5,則連接△DBC兩腰中點(diǎn)的線段的長(zhǎng)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案