【題目】問題:如何快速計算1+2+3+…+n 的值呢?

(1)探究:令s=1+2+3+…+n,則s=n+n-1+…+2+1

+②得2s=(n+1)(n+1)+…+(n+1)=n(n+1)

因此_________________.

(2)應(yīng)用:

計算:________;

如圖1,一串連續(xù)的整數(shù)1,2,3,4,…,自上往下排列,最上面一行有一個數(shù),以下各行均比上一行多一個數(shù)字,若共有15行數(shù)字,則最底下一行最左邊的數(shù)是_______;

如圖2,一串連續(xù)的整數(shù)-25,-24,-23,…,按圖1方式排列,共有14行數(shù)字,求圖2中所有數(shù)字的和.

【答案】(1);(2)①20100;②106;③2835.

【解析】

(1)兩邊同時除以2即可;

(2)①直接運用1+2+3+…+n=進(jìn)行計算;

②第15行的最底下一行最左邊的數(shù)即前14行的數(shù)子中最后一個加1即可.

③分情況討論,0左邊和右邊兩種情況分析.

解:(1)2s= n(n+1),所以s=;

(2)① =20100;

∵前14行的數(shù)子中,最后一個數(shù)為:

1+2+3+……+14=,

所以第15行第一個數(shù)為:105+1=106;

圖2中共有個數(shù),

其中有25個負(fù)數(shù)、一個0、79個正數(shù),

圖2中所有數(shù)字的和為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P為函數(shù)yx0)圖象上一點過點Px軸、y軸的平行線,分別與函數(shù)yx0)的圖象交于點AB,則△AOB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖.ADBE,∠1=∠2,求證:∠A=∠E.請完成解答過程.

證明:∵ADBE(已知)

∴∠A=∠      

又∵∠1=∠2(已知)

AC      

∴∠3=∠   (兩直線平行,內(nèi)錯角相等)

∴∠A=∠E(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,拋物線y=x2+bx+c過點A30),B1,0),交y軸于點C,點P是該拋物線上一動點,點PC點沿拋物線向A點運動(點P不與點A重合),過點PPDy軸交直線AC于點D

1)求拋物線的解析式;

2)求點P在運動的過程中線段PD長度的最大值;

3APD能否構(gòu)成直角三角形?若能請直接寫出點P坐標(biāo),若不能請說明理由;

4)在拋物線對稱軸上是否存在點M使|MAMC|最大?若存在請求出點M的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建足球特色學(xué)校,營造足球文化氛圍,某學(xué)校隨機抽取部分八年級學(xué)生足球運球的測試成績作為一個樣本,按A,BC,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8—10分,B級:7—7.9分,C級:6—6.9分,D級:1—5.9分)根據(jù)所給信息,解答以下問題:

(1)樣本容量為 ,C對應(yīng)的扇形的圓心角是____度,補全條形統(tǒng)計圖;

(2)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在____等級;

(3)該校八年級有300名學(xué)生,請估計足球運球測試成績達(dá)到級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究問題背景數(shù)學(xué)活動課上,老師將一副三角尺按圖(1)所示位置擺放,分別作出∠AOC,∠BOD的平分線OM、ON,然后提出如下問題:求出∠MON的度數(shù).

特例探究“興趣小組”的同學(xué)決定從特例入手探究老師提出的問題,他們將三角尺分別按圖2、圖3所示的方式擺放,OMON仍然是∠AOC和∠BOD的角平分線.其中,按圖2方式擺放時,可以看成是ON、ODOB在同一直線上.按圖3方式擺放時,∠AOC和∠BOD相等.

1)請你幫助“興趣小組”進(jìn)行計算:圖2中∠MON的度數(shù)為   °.圖3中∠MON的度數(shù)為   °.

發(fā)現(xiàn)感悟

解決完圖2,圖3所示問題后,“興趣小組”又對圖1所示問題進(jìn)行了討論:

小明:由于圖1中∠AOC和∠BOD的和為90°,所以我們?nèi)菀椎玫健?/span>MOC和∠NOD的和,這樣就能求出∠MON的度數(shù).

小華:設(shè)∠BODx°,我們就能用含x的式子分別表示出∠NOD和∠MOC度數(shù),這樣也能求出∠MON的度數(shù).

2)請你根據(jù)他們的談話內(nèi)容,求出圖1中∠MON的度數(shù).

類比拓展

受到“興趣小組”的啟發(fā),“智慧小組”將三角尺按圖4所示方式擺放,分別作出∠AOC、∠BOD的平分線OMON,他們認(rèn)為也能求出∠MON的度數(shù).

3)你同意“智慧小組”的看法嗎?若同意,求出∠MON的度數(shù);若不同意,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛出租車從地出發(fā),在一條東西走向的街道上往返,每次行駛的路程(記向東為正)記錄如下表所示(,單位:

第一次

第二次

第三次

第四次

1)寫出這輛出租車每次行駛的方向.

2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置.

3)這輛出租車一共行駛多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,邊OC在x軸的負(fù)半軸上,反比例函數(shù)的圖象經(jīng)過點A與BC的中點F,連接AF,OF,若△AOF的面積為12,則k的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在四邊形ABCD中,AD//BC,對角線ACBD交于點O,且AC=BD,下列四個命題中真命題是(

A. AB=CD,則四邊形ABCD一定是等腰梯形;

B. ∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;

C. ,則四邊形ABCD一定是矩形;

D. AC⊥BDAO=OD,則四邊形ABCD一定是正方形.

查看答案和解析>>

同步練習(xí)冊答案