如圖1,已知正方形ABCD的對角線AC、BD相交于點(diǎn)O,E是AC上一點(diǎn),連接EB,過點(diǎn)A作AM⊥BE,垂足為M,AM交BD于點(diǎn)F.
(1)求證:OE=OF;
(2)如圖2,若點(diǎn)E在AC的延長線上,AM⊥BE于點(diǎn)M,交DB的延長線于點(diǎn)F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
(1)證明:∵四邊形ABCD是正方形.
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO.
∴△BOE≌△AOF.
∴OE=OF.

(2)OE=OF成立.
證明:∵四邊形ABCD是正方形,
∴∠BOE=∠AOF=90°,OB=OA.
又∵AM⊥BE,
∴∠F+∠MBF=90°,
∠E+∠OBE=90°,
又∵∠MBF=∠OBE,
∴∠F=∠E.
∴△BOE≌△AOF.
∴OE=OF.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在梯形ABCD中,ADBC,AD=2,BC=8,AC=6,BD=8,則此梯形的面積是( 。
A.24B.20C.16D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直角坐標(biāo)系中,正方形ABCD的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形ABCD的邊長為1,點(diǎn)P為BC邊上的任意一點(diǎn)(可與點(diǎn)B或C重合),分別過B、D作AP的垂線段,垂足分別是B1、D1.猜想:(DD1)2+(BB1)2的值,并對你的猜想加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在正方形ABCD中,AB=4,E為邊BC延長線上一點(diǎn),連接DE,BF⊥DE,垂足為點(diǎn)F,BF與邊CD交于點(diǎn)G,連接EG.設(shè)CE=x.
(1)求∠CEG的度數(shù);
(2)當(dāng)BG=2
5
時,求△AEG的面積;
(3)如果AM⊥BF,AM與BC相交于點(diǎn)M,四邊形AMCD的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

正方形ABCD中,∠DAF=35°,AF交對角線BD于E,交CD于F,
(1)說明AE=EC;
(2)求∠BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在一正方形ABCD中.E為對角線AC上一點(diǎn),連接EB、ED,
(1)求證:△BEC≌△DEC:
(2)延長BE交AD于點(diǎn)F,若∠DEB=140°.求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是一個正方形.
(1)請你在平面內(nèi)找到一個點(diǎn)O,并連接OA、OB、OC、OD使得到△OAB、△BOC、△COD、△OAD是全等的等腰三角形.
(2)寫出你找到的等腰三角形的頂角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠CAB與∠CBA均為銳角,分別以CA、CB為邊向△ABC外側(cè)作正方形CADE和正方形CBFG,再作DD1⊥直線AB于D1,F(xiàn)F1⊥直線AB于F1
求證:(Ⅰ)DD1+FF1=AB;
(Ⅱ)線段AB的中點(diǎn)N也平分線段D1F1

查看答案和解析>>

同步練習(xí)冊答案