【題目】如圖,在△ABC中,CE⊥AB于點(diǎn)E,DF⊥AB于點(diǎn)F,CE平分∠ACB,DF平分∠BDE,
求證:AC∥ED.
證明:∵CE⊥AB于E,DF⊥AB于F(已知)
∴DF∥ (垂直于同一條直線的兩直線平行)
∴∠BDF=∠ ( )
∠FDE=∠ (兩直線平行,內(nèi)錯(cuò)角相等)
∵CE平分∠ACB,DF平分∠BDE(已知)
∴∠ACE=∠ECB,∠EDF=∠BDF(角平分線的定義)
∴∠ACE=∠ (等量代換)
∴AC∥ED( ).
【答案】CE;BCE;兩直線平行,同位角相等;DEC;DEC;內(nèi)錯(cuò)角相等,兩直線平行.
【解析】根據(jù)垂直證明DF∥CE,利用平行線的性質(zhì)和角平分線的定義得出∠ACE=∠DEC,進(jìn)而利用平行線判定解答即可.
詳證明:∵CE⊥AB于E,DF⊥AB于F(已知)
∴DF∥CE(垂直于同一條直線的兩直線平行)
∴∠BDF=∠BCE(兩直線平行,同位角相等)
∠FDE=∠DEC(兩直線平行,內(nèi)錯(cuò)角相等)
∵CE平分∠ACB,DF平分∠BDE(已知)
∴∠ACE=∠ECB,∠EDF=∠BDF(角平分線的定義)
∴∠ACE=∠DEC(等量代換)
∴AC∥ED(內(nèi)錯(cuò)角相等,兩直線平行).
故答案為:CE;BCE;兩直線平行,同位角相等;DEC;DEC;內(nèi)錯(cuò)角相等,兩直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】仔細(xì)閱讀下面例題,解答問(wèn)題
例題:已知二次三項(xiàng)式x2﹣4x+m有一個(gè)因式是(x+3),求另一個(gè)因式以及m的值.
解:設(shè)另一個(gè)因式為(x+n),得x2﹣4x+m=(x+3)(x+n),
則x2﹣4x+m=x2+(n+3)x+3n
∴
解得:n=﹣7,m=﹣21.
∴另一個(gè)因式為(x﹣7),m的值為﹣21.
問(wèn)題:
(1)若二次三項(xiàng)式x2﹣5x+6可分解為(x﹣2)(x+a),則a= ;
(2)若二次三項(xiàng)式2x2+bx﹣5可分解為(2x﹣1)(x+5),則b= ;
(3)仿照以上方法解答下面問(wèn)題:若二次三項(xiàng)式2x2+3x﹣k有一個(gè)因式是(2x﹣5),求另一個(gè)因式以及k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,AB=AC=10cm,BC=8cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3cm/s的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1s后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC邊上相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)甲、乙兩種商品,購(gòu)進(jìn) 4 件甲種商品比購(gòu)進(jìn) 5 件乙種商品少用 10 元,購(gòu) 進(jìn) 20 件甲種商品和 10 件乙種商品共用去 160 元.
(1)求甲、乙兩種商品每件進(jìn)價(jià)分別是多少元?
(2)若該商店購(gòu)進(jìn)甲、乙兩種商品共 140 件,都標(biāo)價(jià) 10 元出售,售出一部分降價(jià)促銷, 以標(biāo)價(jià)的八折售完所有剩余商品,以 10 元售出的商品件數(shù)比購(gòu)進(jìn)甲種商品件數(shù)少 20 件,該商店此次購(gòu)進(jìn)甲、乙兩種商品降價(jià)前后共獲利不少于 420 元,求至少購(gòu)進(jìn)甲種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李到某城市行政中心大樓辦事,假定乘電梯向上一樓記為+1,向下一樓記為–1.
小李從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層): +5,–3,+10,–8,+12,–6,–10.
(1)請(qǐng)你通過(guò)計(jì)算說(shuō)明小李最后是否回到出發(fā)點(diǎn)1樓;
(2)該中心大樓每層高2.8m,電梯每上或下1m需要耗電0.1度.根據(jù)小李現(xiàn)在所處的位置,請(qǐng)你算一算,當(dāng)他辦事時(shí)電梯需要耗電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高,得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠BAC=90°時(shí),四邊形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正確的是_________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4 cm,BC=8 cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止.點(diǎn)P,Q的速度的速度都是1 cm/s,連結(jié)PQ,AQ,CP,設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形?
(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形?
(3)分別求出(2)中菱形AQCP的周長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)在直線上運(yùn)動(dòng)(不與點(diǎn)、重合),點(diǎn)在射線上運(yùn)動(dòng),且,設(shè).
(1)如圖①,當(dāng)點(diǎn)在邊上時(shí),且,則_______,_______;
(2)如圖②,當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)的左側(cè)時(shí),其他條件不變,請(qǐng)猜想
和的數(shù)量關(guān)系,并說(shuō)明理由;
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,和還滿足(2)
中的數(shù)量關(guān)系嗎?請(qǐng)畫出圖形,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:a=,,c是-27的立方根.
(1)b =_______,c =_______;
(2)化簡(jiǎn)a,并求a+b-c的平方根;
(3)若關(guān)于的不等式組無(wú)解,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com