【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關于x的函數解析式,并寫出x的取值范圍.
【答案】(1)7;(2)15或;(3)().
【解析】
試題分析:(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,則DH=BC=12,CD=BH,再利用勾股定理計算出AH,從而得到BH和CD的長;
(2)分類討論:當EA=EG時,則∠AGE=∠GAE,則判斷G點與D點重合,即ED=EA,作EM⊥AD于M,如圖1,則AM=AD=,通過證明Rt△AME∽Rt△AHD,利用相似比可計算出此時的AE長;當GA=GE時,則∠AGE=∠AEG,可證明AE=AD=15,(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再證明△EAG∽△EDA,則利用相似比可表示出EG=,則可表示出DG,然后證明△DGF∽△EGA,于是利用相似比可表示出x和y的關系.
試題解析:(1)作DH⊥AB于H,如圖1,易得四邊形BCDH為矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;
(2)當EA=EG時,則∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G點與D點重合,即ED=EA,作EM⊥AD于M,如圖1,則AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;
當GA=GE時,則∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,綜上所述,△AEC是以EG為腰的等腰三角形時,線段AE的長為或15;
(3)作DH⊥AB于H,如圖2,則AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=():,∴(9<x<).
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標是(2,1),將點A繞原點O旋轉180°得到點A′,則點A′的坐標是( )
A.(-1,-2)B.(1,-2)C.(-2,-1)D.(2,-1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索與證明:(1)如圖1,直線m經過正三角形ABC的頂點A,在直線m上取兩點 D,E,使得∠ADB=60°,∠AEC=60°.通過觀察或測量,猜想線段BD,CE與DE之間滿足的數量關系,并予以證明;
(2)將(1)中的直線m繞點A逆時針方向旋轉一個角度到如圖2的位置,并使∠ADB=120°,∠AEC=120°.通過觀察或測量,請直接寫出線段BD,CE與DE之間滿足的數量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點,CE⊥AD于E,BF∥AC交CE的延長線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】要說明命題“若a b,則 a2 b2” 是假命題,能舉的一個反例是( )
A.a 3, b 2B.a 4, b 1C.a 1, b 0D.a 1, b 2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果兩個圓的圓心距為3,其中一個圓的半徑長為4,另一個圓的半徑長大于1,那么這兩個圓的位置關系不可能是( 。
A.內含B.內切C.外切D.相交
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果兩點A(2,a)和B(x,b)在拋物線y=x2﹣4x+m上,那么a和b的大小關系為:a_____b.(從“>”“≥”“<”“≤”中選擇).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年3月全國兩會政府工作報告中指出:城鎮(zhèn)新增就業(yè)人數超過6400萬人,城鎮(zhèn)保障性安居工程住房建設4013萬套,上億群眾喜遷新居.將6400萬用科學記數法表示為( )
A.6.4×107
B.6.4×108
C.6.4×103
D.64×106
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com