如圖,圖中最大的扇形表示________占________的________%,可以量出這個(gè)扇形的圓心角________,如果不用量角器測(cè)量,請(qǐng)寫出計(jì)算式:________,如果知道該校學(xué)生人數(shù)總量為2000人,則可以算出最喜歡足球運(yùn)動(dòng)的有________人.

答案:
解析:

喜歡足球的學(xué)生,全校學(xué)生,46,,×360=,920


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•和平區(qū)模擬)圖①至圖③中,兩平行線AB、CD間的距離均為6,點(diǎn)M為AB上一定點(diǎn).扇形紙片OMP在AB、CD之間(包括AB、CD),扇形OMP的圓心角∠MOP=α,半徑OM=4.如圖①,扇形的半徑OM在AB上.如圖②③,將扇形紙片OMP繞點(diǎn)M在AB、CD之間順時(shí)針旋轉(zhuǎn).
(Ⅰ)如圖②,當(dāng)α=60°時(shí),在旋轉(zhuǎn)過程中,點(diǎn)P到直線CD的最小距離是
2
2
,旋轉(zhuǎn)角∠BMO的最大值是
90°
90°
;
(Ⅱ)如圖③,在扇形紙片OMP旋轉(zhuǎn)的過程中,要使點(diǎn)P落在直線CD上,α的最大值是
120°
120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河北省初中畢業(yè)生升學(xué)文化課考試數(shù)學(xué)試題 題型:044

觀察思考

某種在同一平面進(jìn)行傳動(dòng)的機(jī)械裝置如圖1,圖2是它的示意圖.其工作原理是:滑塊Q在平直滑道l上可以左右滑動(dòng),在Q滑動(dòng)的過程中,連桿PQ也隨之運(yùn)動(dòng),并且PQ帶動(dòng)連桿OP繞固定點(diǎn)O擺動(dòng).在擺動(dòng)過程中,兩連桿的接點(diǎn)P在以OP為半徑的⊙O上運(yùn)動(dòng).?dāng)?shù)學(xué)興趣小組為進(jìn)一步研究其中所蘊(yùn)含的數(shù)學(xué)知識(shí),過點(diǎn)OOHl于點(diǎn)H,并測(cè)得OH=4分米,PQ=3分米,OP=2分米.

解決問題

(1)點(diǎn)Q與點(diǎn)O間的最小距離是________分米;點(diǎn)Q與點(diǎn)O間的最大距離是________分米;點(diǎn)Ql上滑到最左端的位置與滑到最右端位置間的距離是________分米.

(2)如圖3,小明同學(xué)說:“當(dāng)點(diǎn)Q滑動(dòng)到點(diǎn)H的位置時(shí),PQ與⊙O是相切的.”你認(rèn)為他的判斷對(duì)嗎?為什么?

(3)①小麗同學(xué)發(fā)現(xiàn):“當(dāng)點(diǎn)P運(yùn)動(dòng)到OH上時(shí),點(diǎn)Pl的距離最。笔聦(shí)上,還存在著點(diǎn)Pl距離最大的位置,此時(shí),點(diǎn)Pl的距離是________分米;

②當(dāng)OP繞點(diǎn)O左右擺動(dòng)時(shí),所掃過的區(qū)域?yàn)樯刃,求這個(gè)扇形面積最大時(shí)圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆安徽省南陵縣惠民中學(xué)九年級(jí)上學(xué)期第二次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖1至圖4中,兩平行線AB、CD間的距離均為6,點(diǎn)M為AB上一定點(diǎn).

思考:
如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點(diǎn)P為半圓上一點(diǎn),設(shè)∠MOP=α。
當(dāng)α=    度時(shí),點(diǎn)P到CD的距離最小,最小值為    。
探究一:
在圖1的基礎(chǔ)上,以點(diǎn)M為旋轉(zhuǎn)中心,在AB,CD 之間順時(shí)針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動(dòng)為止,如圖2,得到最大旋轉(zhuǎn)角∠BMO=    度,此時(shí)點(diǎn)N到CD的距離是    
探究二:
將如圖1中的扇形紙片NOP按下面對(duì)α的要求剪掉,使扇形紙片MOP繞點(diǎn)M在AB,CD之間順時(shí)針旋轉(zhuǎn)。
(1)如圖3,當(dāng)α=60°時(shí),求在旋轉(zhuǎn)過程中,點(diǎn)P到CD的最小距離,并請(qǐng)指出旋轉(zhuǎn)角∠BMO的最大值;
(2)如圖4,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點(diǎn)P能落在直線CD上,請(qǐng)確定α的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省九年級(jí)上學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1至圖4中,兩平行線AB、CD間的距離均為6,點(diǎn)M為AB上一定點(diǎn).

思考:

如圖1,圓心為0的半圓形紙片在AB,CD之間(包括AB,CD),其直徑MN在AB上,MN=8,點(diǎn)P為半圓上一點(diǎn),設(shè)∠MOP=α。

當(dāng)α=     度時(shí),點(diǎn)P到CD的距離最小,最小值為     。

探究一:

在圖1的基礎(chǔ)上,以點(diǎn)M為旋轉(zhuǎn)中心,在AB,CD 之間順時(shí)針旋轉(zhuǎn)該半圓形紙片,直到不能再轉(zhuǎn)動(dòng)為止,如圖2,得到最大旋轉(zhuǎn)角∠BMO=     度,此時(shí)點(diǎn)N到CD的距離是     。

探究二:

將如圖1中的扇形紙片NOP按下面對(duì)α的要求剪掉,使扇形紙片MOP繞點(diǎn)M在AB,CD之間順時(shí)針旋轉(zhuǎn)。

(1)如圖3,當(dāng)α=60°時(shí),求在旋轉(zhuǎn)過程中,點(diǎn)P到CD的最小距離,并請(qǐng)指出旋轉(zhuǎn)角∠BMO的最大值;

(2)如圖4,在扇形紙片MOP旋轉(zhuǎn)過程中,要保證點(diǎn)P能落在直線CD上,請(qǐng)確定α的最大值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案