【題目】如圖,點(diǎn)P從(0,2)出發(fā),沿所示的方向運(yùn)動(dòng),每當(dāng)碰到矩形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,當(dāng)點(diǎn)P第2019次碰到矩形的邊時(shí)點(diǎn)P的坐標(biāo)為( 。
A.( 2,4 )B.( 2,0 )C.( 8,2)D.( 6,0 )
【答案】C
【解析】
動(dòng)點(diǎn)的反彈與光的反射入射是一個(gè)道理,根據(jù)反射角與入射角的定義可以在格點(diǎn)中作出圖形,可以發(fā)現(xiàn),在經(jīng)過6次反射后,動(dòng)點(diǎn)回到起始的位置,將2019除以6得到336,且余數(shù)為3,說明點(diǎn)P第2019次碰到矩形的邊時(shí)為第337個(gè)循環(huán)組的第3次反彈,因此點(diǎn)P的坐標(biāo)為(8,2).
解:如圖,根據(jù)反射角與入射角的定義作出圖形,
第6次反彈時(shí)回到出發(fā)點(diǎn),每6次碰到矩形的邊為一個(gè)循環(huán)組依次循環(huán),
∵2019÷6=336……3,
∴點(diǎn)P第2019次碰到矩形的邊時(shí)是第336個(gè)循環(huán)組的第3次碰邊,坐標(biāo)為(8,2).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=10,點(diǎn)E是CD的中點(diǎn),將這張紙片依次折疊兩次:第一次折疊紙片使點(diǎn)A與點(diǎn)E重合,如圖②,折痕為MN,連接ME,NE;第二次折疊紙片使點(diǎn)N與點(diǎn)E重合,如圖③,點(diǎn)B落到B′處,折痕為HG,連接HE,則下列結(jié)論:①ME∥HG;②△MEH是等邊三角形;③∠EHG=∠AMN;④tan∠EHG=.其中正確的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于⊙C與⊙C上的一點(diǎn)A,若平面內(nèi)的點(diǎn)P滿足:射線AP與⊙C交于點(diǎn)Q(點(diǎn)Q可以與點(diǎn)P重合),且,則點(diǎn)P稱為點(diǎn)A關(guān)于⊙C的“生長(zhǎng)點(diǎn)”.
已知點(diǎn)O為坐標(biāo)原點(diǎn),⊙O的半徑為1,點(diǎn)A(-1,0).
(1)若點(diǎn)P是點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,且點(diǎn)P在x軸上,請(qǐng)寫出一個(gè)符合條件的點(diǎn)P的坐標(biāo)________;
(2)若點(diǎn)B是點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,且滿足,求點(diǎn)B的縱坐標(biāo)t的取值范圍;
(3)直線與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段MN上存在點(diǎn)A關(guān)于⊙O的“生長(zhǎng)點(diǎn)”,直接寫出b的取值范圍是_____________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);
(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題①如果a,b,c為一組勾股數(shù),那么4a,4b,4c仍是勾股數(shù);②如果三角形的三個(gè)內(nèi)角的度數(shù)比是3:4:5,那么這個(gè)三角形是直角三角形;③如果一個(gè)三角形的三邊是12、25、21,那么此三角形必是直角三角形;④一個(gè)等腰直角三角形的三邊是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正確的是( 。
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開設(shè)武術(shù)、舞蹈、剪紙三項(xiàng)活動(dòng)課程,為了了解學(xué)生對(duì)這三項(xiàng)活動(dòng)課程的興趣情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人從中只能選一頂),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)在扇形統(tǒng)計(jì)圖中,求女生喜歡剪紙活動(dòng)課程人數(shù)對(duì)應(yīng)的圓心角度數(shù);
(4)已知該校有1200名學(xué)生,求全校學(xué)生中喜歡武術(shù)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以C為直角頂點(diǎn)的兩個(gè)等腰直角△CAB和△CDG,E為AB的中點(diǎn),F為DG的中點(diǎn).
(1)如圖1,點(diǎn)A、B分別在邊CD,CG上,則EF與AD的數(shù)量關(guān)系是______________;
(2)如圖2,點(diǎn)A、B不在邊CD、CG上,(1)中EF與AD的關(guān)系還成立嗎?請(qǐng)證明你的結(jié)論;
(3)如圖3,若A、B、G在同一直線上,且A、C、B、F在同一圓上,直接寫出△CDG與△CAB面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下圖的方格紙中,△OAB的頂點(diǎn)坐標(biāo)分別為O(0,0)、A(-2,-1)、B(-1,-3),△O1A1B1與△OAB是關(guān)于點(diǎn)P為位似中心的位似圖形.
(1)在圖中標(biāo)出位似中心P的位置,并寫出點(diǎn)P及點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在位似中心的同側(cè)畫出△OAB的一個(gè)位似△OA2B2,使它與△OAB的相似比為2:1. 并寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B2的坐標(biāo);
(3)△OAB 內(nèi)部一點(diǎn)M的坐標(biāo)為(a,b),寫出M在△OA2B2中的對(duì)應(yīng)點(diǎn)M2的坐標(biāo);
(4)判斷△OA2B2能否看作是由△O1A1B1經(jīng)過某種變換后得到的圖形,若是,請(qǐng)指出是怎樣變換得到的(直接寫答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+5與x軸交于點(diǎn)A(1,0)和點(diǎn)B(5,0),頂點(diǎn)為M.點(diǎn)C在x軸的負(fù)半軸上,且AC=AB,點(diǎn)D的坐標(biāo)為(0,3),直線l經(jīng)過點(diǎn)C、D.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是直線l在第三象限上的點(diǎn),聯(lián)結(jié)AP,且線段CP是線段CA、CB的比例中項(xiàng),
求tan∠CPA的值;
(3)在(2)的條件下,聯(lián)結(jié)AM、BM,在直線PM上是否存在點(diǎn)E,使得∠AEM=∠AMB.若存在,求出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com