【題目】1)如圖1,△ACB和△DCE均為等邊三角形,點(diǎn)A,DE在同一直線上,連接BE

①∠AEB的度數(shù)為__________;

②線段ADBE之間的數(shù)量關(guān)系為__________;

2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=DCE=90°,點(diǎn)A,D,E在同一直線上,CM為△DCEDE邊上的高,連接BE,請(qǐng)判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)如圖3,在正方形ABCD中,CD=,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫出點(diǎn)ABP的距離為________________________________

【答案】1)①60°,②AD=BE;(2)∠AEB=90°,AE=BE+2CM,理由見(jiàn)解析;(3ABP的距離為.

【解析】

1)由條件易證ACD≌△BCE,從而得到:AD=BE,∠ADC=BEC.由點(diǎn)A,DE在同一直線上可求出∠ADC,從而可以求出∠AEB的度數(shù).
2)仿照(1)中的解法可求出∠AEB的度數(shù),證出AD=BE;由DCE為等腰直角三角形及CMDCEDE邊上的高可得CM=DM=ME,從而證到AE=2CH+BE
3)由PD=1可得:點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上;由∠BPD=90°可得:點(diǎn)P在以BD為直徑的圓上.顯然,點(diǎn)P是這兩個(gè)圓的交點(diǎn),由于兩圓有兩個(gè)交點(diǎn),接下來(lái)需對(duì)兩個(gè)位置分別進(jìn)行討論.然后,添加適當(dāng)?shù)妮o助線,借助于(2)中的結(jié)論即可解決問(wèn)題.

解:(1)①如圖1,

∵△ACBDCE均為等邊三角形,
CA=CB,CD=CE,∠ACB=DCE=60°
∴∠ACD=BCE
ACDBCE中,

∴△ACD≌△BCESAS).
∴∠ADC=BEC
∵△DCE為等邊三角形,
∴∠CDE=CED=60°
∵點(diǎn)A,D,E在同一直線上,
∴∠ADC=120°
∴∠BEC=120°
∴∠AEB=BEC-CED=60°
故答案為:60°

②∵△ACD≌△BCE,
AD=BE
故答案為:AD=BE

2)∠AEB=90°,AE=BE+2CM

理由:如圖2,

∵△ACBDCE均為等腰直角三角形,

CA=CB,CD=CE,∠ACB=DCE=90°

∴∠ACD=BCE

ACDBCE中,

∴△ACD≌△BCE

AD=BE,∠ADC=BEC,

∵△DCE為等腰直角三角形,

∴∠CDE=CED=45°

∵點(diǎn)A,DE在同一直線上,

∴∠ADC=135°

∴∠BEC=135°

∴∠AEB=BEC-∠CED=90°,

CD=CE,CMDE

DM=ME,

∵∠DCE=90°,

DM=ME=CM

AE=AD+DE=BE+2CM

3ABP的距離為

理由如下:
PD=1,
∴點(diǎn)P在以點(diǎn)D為圓心,1為半徑的圓上.
∵∠BPD=90°,
∴點(diǎn)P在以BD為直徑的圓上.
∴點(diǎn)P是這兩圓的交點(diǎn).
①當(dāng)點(diǎn)P在如圖3①所示位置時(shí),


連接PD、PB、PA,作AHBP,垂足為H
過(guò)點(diǎn)AAEAP,交BP于點(diǎn)E,如圖3①.
∵四邊形ABCD是正方形,
∴∠ADB=45°AB=AD=DC=BC=,∠BAD=90°
BD=
DP=1
BP=
∵∠BPD=BAD=90°,
A、P、D、B在以BD為直徑的圓上,
∴∠APB=ADB=45°
∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,點(diǎn)B、E、P共線,AHBP,
∴由(2)中的結(jié)論可得:BP=2AH+PD
=2AH+1
AH=


②當(dāng)點(diǎn)P在如圖3②所示位置時(shí),
連接PD、PB、PA,作AHBP,垂足為H,
過(guò)點(diǎn)AAEAP,交PB的延長(zhǎng)線于點(diǎn)E,如圖3②.
同理可得:BP=2AH-PD
=2AH-1
AH=
綜上所述:點(diǎn)ABP的距離為

故答案為:(1)①60°,②AD=BE;(2)∠AEB=90°,AE=BE+2CM,理由見(jiàn)解析;(3ABP的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線,過(guò)點(diǎn)D0,)的直線與拋物線交于點(diǎn)M、N,與軸交于點(diǎn)E,且點(diǎn)M、N關(guān)于點(diǎn)E對(duì)稱,求直線MN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,已知直線y=-x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),C點(diǎn)坐標(biāo)為(﹣2,0).

(1)求經(jīng)過(guò)A,B,C三點(diǎn)的拋物線的解析式;

(2)如果M為拋物線的頂點(diǎn),聯(lián)結(jié)AM、BM,求四邊形AOBM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開(kāi)放40年以來(lái),城鄉(xiāng)居民生活水平持續(xù)快速提升。居民教育、文化和娛樂(lè)消費(fèi)支出持續(xù)增長(zhǎng)。下圖為北京市統(tǒng)計(jì)局發(fā)布的2017年和2018年我市居民人均教育、文化和娛樂(lè)消費(fèi)支出的折線圖。

說(shuō)明:在統(tǒng)計(jì)學(xué)中,同比是指本期統(tǒng)計(jì)數(shù)據(jù)與上一年同期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2017年第二季度相比較;環(huán)比是指本期統(tǒng)計(jì)數(shù)據(jù)與上期統(tǒng)計(jì)數(shù)據(jù)相比較,例如2018年第二季度與2018年第一季度相比較。根據(jù)上述信息,下列結(jié)論中錯(cuò)誤的是(

A. 2017年第二季度環(huán)比有所提高

B. 2017年第四季度環(huán)比有所降低

C. 2018年第一季度同比有所提高

D. 2018年第四季度同比有所提高

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下表中,我們把第i行第j列的數(shù)記為(其中i,j都是不大于5的正整數(shù)),對(duì)于表中的每個(gè)數(shù),規(guī)定如下:當(dāng)ij時(shí),=l;當(dāng)i<j時(shí),=0。例如:當(dāng)i=2,j=1時(shí),==1。按此規(guī)定,=______;表中的25個(gè)數(shù)中,共有_______個(gè)1;計(jì)算 +·+·+·+·的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1所示的遮陽(yáng)傘,傘柄垂直于水平地面,其示意圖如圖2.當(dāng)傘收緊時(shí),點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開(kāi)時(shí),動(dòng)點(diǎn)PAB移動(dòng);當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),傘張得最開(kāi).已知傘在撐開(kāi)的過(guò)程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米.

1﹚求AP長(zhǎng)的取值范圍;

2﹚在陽(yáng)光垂直照射下,傘張得最開(kāi)時(shí),求傘下的陰影﹙假定為圓面﹚面積S﹙結(jié)果保留π﹚.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知四邊形ABCD和一點(diǎn)O,求作四邊形A′B′C′D′,使它與四邊形ABCD關(guān)于點(diǎn)O對(duì)稱;如果把O點(diǎn)移至如圖(2)所示位置,又該怎么作圖呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,∠BAC90°,ADBCDE為直角邊AC的中點(diǎn),過(guò)D,E作直線交AB的延長(zhǎng)線于F.求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小明畫了一個(gè)銳角,并作出了它的兩條高,兩高相交于點(diǎn).小明說(shuō)圖形中共有兩對(duì)相似三角形,他說(shuō)的對(duì)嗎?請(qǐng)你判定一下,如果正確,就其中的一對(duì)進(jìn)行說(shuō)理.

查看答案和解析>>

同步練習(xí)冊(cè)答案