【題目】如圖,正方形ABCD的邊長(zhǎng)為4,分別以正方形的三邊為直徑在正方形內(nèi)部作半圓,則陰影部分的面積之和是( 。
A.8B.4C.16πD.4π
【答案】A
【解析】
先判斷出兩半圓交點(diǎn)為正方形的中心,連接OA,OD,則可得出所產(chǎn)生的四個(gè)小弓形的面積相等,先得出2個(gè)小弓形的面積,即可求陰影部分面積.
解:由題意,易知兩半圓的交點(diǎn)即為正方形的中心,設(shè)此點(diǎn)為O,連接AO,DO,
則圖中的四個(gè)小弓形的面積相等,
∵兩個(gè)小弓形面積=S半圓AOD-S△AOD=S半圓AOD-S正方形ABCD,
又正方形ABCD的邊長(zhǎng)為4,得各半圓的半徑為2,
∴兩個(gè)小弓形面積=×π×22﹣×4×4=2π﹣4,
∴S陰影=2×S半圓﹣4個(gè)小弓形面積=π22﹣2(2π﹣4)=8,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,8),點(diǎn) B(b,t)在直線x=b上運(yùn)動(dòng),點(diǎn)D、E、F分別為OB、0A、AB的中點(diǎn),其中b是大于零的常數(shù).
(1)判斷四邊形DEFB的形狀.并證明你的結(jié)論;
(2)試求四邊形DEFB的面積S與b的關(guān)系式;
(3)設(shè)直線x=b與x軸交于點(diǎn)C,問(wèn):四邊形DEFB能不能是矩形?若能.求出t的值;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)C為直徑BA的延長(zhǎng)線上一點(diǎn),CD切⊙O于點(diǎn)D,
(Ⅰ)如圖①,若∠CDA=26°,求∠DAB的度數(shù);
(Ⅱ)如圖②,過(guò)點(diǎn)B作⊙O的切線交CD的延長(zhǎng)線于點(diǎn)E,若⊙O的半徑為3,BC=10,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形紙片ABCD中,已知AD=8,AB=6,E是邊BC上的點(diǎn),以AE為折痕折疊紙片,使點(diǎn)B落在點(diǎn)F處,連接FC,當(dāng)△EFC為直角三角形時(shí),BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(m,3)、B(6,n)在雙曲線y=(x>0)上,直線y=ax+b經(jīng)過(guò)A、B兩點(diǎn),并與x軸、y軸分別相交手C、D兩點(diǎn),已知S△OAB=8.
(1)求雙曲線y=的函數(shù)表達(dá)式;
(2)求△COD的周長(zhǎng);
(3)直接寫(xiě)出不等式-ax>b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測(cè)得塔頂B的仰角為45°,在樓頂D處測(cè)得塔頂B的仰角為39°.
(1)求大樓與電視塔之間的距離AC;
(2)求大樓的高度CD(精確到1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,以為直徑的交于點(diǎn),.
(1)判斷與的位置關(guān)系,并說(shuō)明理由;
(2)求證:;
(3)在上取一點(diǎn),若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣1,0)、B(5,0)、C(0,﹣5)三點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<5時(shí),y的取值范圍為 ;
(3)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=21,直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)地鐵站入口的雙翼閘機(jī).如圖2,它的雙翼展開(kāi)時(shí),雙翼邊緣的端點(diǎn)A與B之間的距離為10cm,雙翼的邊緣AC=BD=54cm,且與閘機(jī)側(cè)立面夾角∠PCA=∠BDQ=30°.當(dāng)雙翼收起時(shí),可以通過(guò)閘機(jī)的物體的最大寬度為( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com