【題目】如圖,在△ABC中,∠ABC=2∠C,小明做了如下操作:
(Ⅰ)以A為圓心,AB長為半徑畫弧,交AC于點F;
(Ⅱ)以A為圓心,任意長為半徑畫弧,交AB、AC于M、N兩點,分別以M、N為圓心,以大于MN為半徑畫弧,兩弧交于一點P,作射線AP,交BC于點E;
(Ⅲ)作直線EF.
依據(jù)小明尺規(guī)作圖的方法,若AB=3.3,BE=1.8,則AC的長為___________;
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(h為常數(shù)),在自變量的值滿足的情況下,與其對應的函數(shù)值的最大值為0,則的值為( )
A. 和B. 和C. 和D. 和
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的外接圓,為直徑,的平分線交于點,過點作的平行線分別交,的延長線于點,.
(1)求證:是的切線;
(2)設,,試用含,的代數(shù)式表示線段的長;
(3)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉動,轉過的角度記作a;設半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:(1)若R=2,m=1,如圖1,當旋轉30°時,圓心O′到射線AB的距離是 ;如圖2,當a= °時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時,為了對任意旋轉角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關系,請你幫助他直接寫出這個關系;
cosα= (用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當半圓弧線與射線AB有兩個交點時,α的取值范圍是 ,并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)營一種文化衫,已知成批購進時的單價是20元.調查發(fā)現(xiàn):銷售單價是30元時,月銷售量是230件,而銷售單價每上漲1元,月銷售量就減少10件,但每件文化衫售價不能高于40元.設每件文化衫的銷售單價上漲了元時(為正整數(shù)),月銷售利潤為元.
(1)求與的函數(shù)關系式并直接寫出自變量的取值范圍.
(2)每件文化衫的售價定為多少元時可使月銷售利潤最大?最大的月利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學興趣小組為測量一棵古樹和教學樓的高,先在處用高1.5米的測角儀測得古樹頂端的仰角為,此時教學樓頂端恰好在視線上,再向前走9米到達處,又測得教學樓頂端的仰角為,點、、三點在同一水平線上.
(1)計算古樹的高;
(2)計算教學樓的高.(結果精確到0.1米,參考數(shù)據(jù):,,,).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年5月13日,大國重器﹣﹣中國第一艘國產(chǎn)航母正式海試,某校團支部為了了解同學們對此事的知曉情況,隨機抽取了部分同學進行調查,并根據(jù)收集到的信息繪制了如下兩幅不完整的統(tǒng)計圖,圖中A表示“知道得很詳細”,B表示“知道個大概”,C表示“聽說了”,D表示“完全不知道”,請根據(jù)途中提供的信息完成下列問題:
(1)扇形統(tǒng)計圖中A對應的圓心角是 度,并補全折線統(tǒng)計圖.
(2)被抽取的同學中有4位同學都是班級的信息員,其中有一位信息員屬于D類,校團支部從這4位信息員中隨機選出兩位作為校廣播站某訪談節(jié)目的嘉賓,請用列表法或畫樹狀圖法,求出屬于D類的信息員被選為的嘉賓的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com