6.計(jì)算:$\frac{y}{x}$÷$\frac{x}{y}$•(-$\frac{y}{x}$)=-$\frac{{y}^{3}}{{x}^{3}}$.

分析 原式利用除法法則變形,約分即可得到結(jié)果.

解答 解:原式=$\frac{y}{x}$•$\frac{y}{x}$•(-$\frac{y}{x}$)=-$\frac{{y}^{3}}{{x}^{3}}$,
故答案為:-$\frac{{y}^{3}}{{x}^{3}}$

點(diǎn)評(píng) 此題考查了分式的乘除法,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn),再求代數(shù)式$\frac{a-2}{a-4}÷(a+\frac{4}{a-4})$的值,其中a=tan30°+2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算:
(1)2$\sqrt{3}×(\sqrt{12}-3\sqrt{75})+\frac{1}{3}\sqrt{108}$$÷2\sqrt{3}$;
(2)($\sqrt{3}+\sqrt{2}-1$)($\sqrt{3}-\sqrt{2}+$1)
(3)(a$+2\sqrt{ab}+b$)÷($\sqrt{a}+\sqrt$)$-(\sqrt-\sqrt{a})$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,拋物線y=$\frac{1}{2}$x2+mx+n與直線y=-$\frac{1}{2}$x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,BC,已知A(0,3),C(3,0).
(1)求拋物線的解析式;
(2)求tan∠BAC的值;
(3)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒$\sqrt{2}$個(gè)單位的速度運(yùn)動(dòng)到A后停止,當(dāng)點(diǎn)E的坐標(biāo)是多少時(shí),點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.先化簡(jiǎn)再求值:求多項(xiàng)式3a+abc-$\frac{1}{3}$c2-3a+$\frac{1}{3}$c2的值,其中a=-$\frac{1}{6}$,b=2,c=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

11.有這樣一道題:“計(jì)算(2x3-3xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=$\frac{1}{2}$,y=-1”.甲同學(xué)把“x=$\frac{1}{2}$”錯(cuò)抄成“x=-$\frac{1}{2}$”,但他計(jì)算的結(jié)果也是正確的,試說(shuō)明理由,并求出這個(gè)結(jié)果?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,拋物線y=ax2+bx+c經(jīng)過(guò)A(1,0)、B(4,0)、C(0,3)三點(diǎn).
(1)求拋物線的解析式;
(2)如圖,在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使得四邊形PAOC的周長(zhǎng)最?若存在,求出四邊形PAOC周長(zhǎng)的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知實(shí)數(shù)a在數(shù)軸上的位置如圖所示,則化簡(jiǎn)|a+1|+|a|的結(jié)果為( 。
A.1B.2C.2a+1D.-2a-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在$\frac{a-b}{2}$,$\frac{x+1}{x}$,$\frac{5+x}{π}$,$\frac{a+b}{a-b}$中,是分式的有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案