【題目】如圖,在中, 平分, 于點.
(1)求的度數(shù).
(2)求證: .
【答案】(1)22.5;(2)證明見解析.
【解析】試題分析:(1)因為∠E=∠A,∠CDE=∠BDA,可得∠ECD=∠ABD,由條件知∠ABC=45°且BD平分∠ABC,從而得解.
(2)延長BA,CE交于點F,證△ABD≌△ACF,通過角之間的關(guān)系,得到BF=BC,又由CE⊥BD,進(jìn)而可求解.
試題解析:(1)∵
∴∠ABC=45°
∵BD平分∠ABC
∴∠ABD=∠ABC=22.5°
在△ABD和△ECD中,∠E=∠A,∠CDE=∠BDA
∴∠ECD=∠ABD=22.5°;
(2)證明:如圖所示,延長BA,CE交于點F,
∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,
∴∠ABD=∠ACF,
又∵AB=AC,
在Rt△ABD和Rt△ACF中
∴Rt△ABD≌Rt△ACF,
∴BD=CF,
在Rt△FBE和Rt△CBE中
∵BD平分∠ABC,
∴∠BCF=∠F,
∵∠BEC=90°
∴∠BEF=∠BEC=90°
∵BE=BE
∴Rt△FBE≌Rt△CBE
∴EF=EC,
∴CF=2CE,
即BD=2CE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點M(-3,2)分別作x軸、y軸的垂線與反比例函數(shù)y=的圖象交于A,B兩點,則四邊形MAOB的面積為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度數(shù);
(2)若∠COM=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線OM⊥ON,垂足為O,三角板的直角頂點C落在∠MON的內(nèi)部,三角板的另兩條直角邊分別與ON、OM交于點D和點B.
(1)填空:∠OBC+∠ODC= ;
(2)如圖1:若DE平分∠ODC,BF平分∠CBM,求證:DE⊥BF:
(3)如圖2:若BF、DG分別平分∠OBC、∠ODC的外角,判斷BF與DG的位置關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】向陽中學(xué)數(shù)學(xué)興趣小組對關(guān)于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列問題:
(1)是否存在m的值,使方程為一元二次方程?若存在,求出m的值,并解此方程;
(2)是否存在m的值,使方程為一元一次方程?若存在,求出m的值,并解此方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°,AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB;②當(dāng)x=1時,四邊形ABCD是菱形;③當(dāng)x=2時,△BDD為等邊三角形.其中正確的是_______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓桌正上方的燈泡(看作一個點)發(fā)出的光線照射桌面后,在地面上形成陰影.已知桌面的直徑為1.2 m,桌面距離地面1 m.若燈泡距離地面3 m,則地面上陰影部分的面積為 ( )
A. 0.36πm2 B. 0.81πm2 C. 2πm2 D. 3.24πm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一工程,在工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書.施工一天,需付甲工程隊工程款1.2萬元,乙工程隊工程款0.5萬元.工程領(lǐng)導(dǎo)小組根據(jù)甲、乙兩隊的投標(biāo)書測算,有如下方案:①甲隊單獨完成這項工程剛好如期完成;②乙隊單獨完成這項工程要比規(guī)定日期多用6天;③若甲、乙兩隊合做3天,余下的工程由乙隊單獨做也正好如期完成.試問:
(1)兩隊單獨做各要幾天完成?
(2)在不耽誤工期的前提下,你覺得哪一種施工方案最節(jié)省工程款?請說明理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com