【題目】如圖,在□ABCD 中,AE、BF 分別平分∠DAB 和∠ABC,交 CD 于點 E、FAE、BF 相交于點 M.則線段 DF _______ CE (填>,<=).

【答案】=

【解析】

DF= CE,利用平行四邊形的對邊平行,以及角平分線的性質(zhì),可以得到△ADE和△BCF都是等腰三角形,那么就有CFBCADDE,再利用等量減等量差相等,可證.

DF=CE,理由如下:

∵在ABCD中,CDAB,

∴∠DEA=∠EAB,

又∵AE平分∠DAB,

∴∠DAE=∠EAB,

∴∠DEA=∠DAE,

DEAD,

同理可得,CFBC,

又∵在ABCD中,ADBC

DECF,

DEEFCFEF,

DFCE

故答案為:=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為進一步發(fā)展基礎(chǔ)教育,自2014年以來,某縣加大了教育經(jīng)費的投入,2014年該縣投入教育經(jīng)費6000萬元。2016年投入教育經(jīng)費8640萬元。假設(shè)該縣這兩年投入教育經(jīng)費的年平均增長率相同。

1求這兩年該縣投入教育經(jīng)費的年平均增長率;

2若該縣教育經(jīng)費的投入還將保持相同的年平均增長率,請你預(yù)算2017年該縣投入教育經(jīng)費多少萬元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖:點(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點,函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點,點E的橫坐標為m,解答下列問題:

(1)k的值;

(2)求點A的坐標;(用含m代數(shù)式表示)

(3)當∠ABD=45°時,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高1元,其每天的銷售量就減少20.

(1)當售價定為12元時,每天可售出________件;

(2)要使每天利潤達到640元,則每件售價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在城鎮(zhèn)化建設(shè)中,開發(fā)商要處理A地大量的建筑垃圾,A地只能容納1臺裝卸機作業(yè),裝卸機平均每6分鐘可以給工程車裝滿一車建筑垃圾,每輛工程車要將建筑垃圾運送至20千米的B處傾倒,每次傾倒時間約為1分鐘,傾倒后立即返回A地等候下一次裝運,直到裝運完畢;工程車的平均速度為40千米/時.

(1)一輛工程車運送一趟建筑垃圾(從裝車到返回)需要多少分鐘?

(2)至少安排多少輛工程車既能保證裝卸機不空閑,又能保證工程車最少等候時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為合理開展“體藝2+1”活動,隨機抽取部分學生進行問卷調(diào)查(每位學生只選擇一種自己喜歡的項目),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

1)參加調(diào)查的學生有   人,在扇形統(tǒng)計圖中,表示 參加繪畫學生的扇形的圓心角為   

2)將條形統(tǒng)計圖補充完整;

3)若該中學有1 450名學生,則估計該中學喜歡籃球的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,D=60°,則兩條斜邊的交點E到直角邊BC的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】母親節(jié)過后,永川區(qū)某校在本校學生中做了一次抽樣調(diào)查,并把調(diào)查結(jié)果分成三種類型:A.已知道哪一天是母親節(jié)的;B.知道但沒有任何行動的;C.知道并問候母親的.如圖是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖(部分),根據(jù)圖中提供的信息,回答下列問題:

①已知A類學生占被調(diào)查學生人數(shù)的30%,則被調(diào)查學生有多少人?

②計算B類學生的人數(shù)并根據(jù)計算結(jié)果補全統(tǒng)計圖;

③如果該校共有學生2000人,試估計這個學校學生中有多少人知道母親節(jié)并問候了母親.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(7分)小敏同學測量一建筑物CD的高度,她站在B處仰望樓頂C,測得仰角為30°,再往建筑物方向走30m,到達點F處測得樓頂C的仰角為45°(BFD在同一直線上).已知小敏的眼睛與地面距離為1.5m,求這棟建筑物CD的高度(參考數(shù)據(jù):,.結(jié)果保留整數(shù))

查看答案和解析>>

同步練習冊答案