【題目】已知:如圖,直線ABCD相交于點(diǎn)OOEOCOF平分∠AOE.

1)若,則∠AOF的度數(shù)為______;

2)若,求∠BOC的度數(shù)。

【答案】12

【解析】

1)根據(jù)對(duì)頂角的性質(zhì)得到∠AOD=BOC=60°,根據(jù)垂直的定義得到∠DOE=90°,根據(jù)角平分線的定義即可得到結(jié)論;

2)由垂直的定義得到∠DOE=COE=90°,根據(jù)角平分線的定義得到∠AOE=2EOF=180°-2x°,根據(jù)對(duì)頂角的性質(zhì)即可得到結(jié)論.

∵∠AOD=BOC=60°

OEOC于點(diǎn)O,

∴∠DOE=90°,

∴∠AOE=30°

OF平分∠AOE,

∴∠AOF= AOE=15°,

故答案為:15°;

(2)OEOC于點(diǎn)O,

∴∠COE=DOE=90°

∵∠COF=x°

∴∠EOF=x°90°,

OF平分∠AOE,

∴∠AOE=2EOF=2x°180°,

∴∠AOD=90°AOE=270°2x°,

∴∠BOC=AOD=270°2x°.

故答案為:270°2x°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生課外活動(dòng),某校積極開(kāi)展社團(tuán)活動(dòng),學(xué)生可根據(jù)自己的愛(ài)好選擇一項(xiàng),已知該校開(kāi)設(shè)的體育社團(tuán)有:A:籃球,B:排球C:足球;D:羽毛球,E:乒乓球.李老師對(duì)某年級(jí)同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖),則以下結(jié)論不正確的是(

A.選科目E的有5

B.選科目D的扇形圓心角是72°

C.選科目A的人數(shù)占體育社團(tuán)人數(shù)的一半

D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數(shù)少21.6°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無(wú)縫隙無(wú)重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長(zhǎng)是(

A.12cmB.16cmC.20cmD.24cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:某數(shù)學(xué)興趣小組把兩個(gè)等腰直角三角形的直角頂點(diǎn)重合,發(fā)現(xiàn)了一些有趣的結(jié)論.

結(jié)論一:

1)如圖1,在ABCADE中,∠BAC=∠DAE90°,ABACADAE,連接BD,CE,試說(shuō)明ADB≌△AEC;

結(jié)論二:

2)如圖2,在(1)的條件下,若點(diǎn)EBC邊上,試說(shuō)明DBBC;

應(yīng)用:

3)如圖3,在四邊形ABCD中,∠ABC=∠ADC90°,ABCB,∠BAD+BCD180°,連接BD,BD7cm,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點(diǎn)DBC上,點(diǎn)EAB上,且DEAC,AE=5,DE=2,DC=3,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿邊AC以每秒2個(gè)單位長(zhǎng)的速度向終點(diǎn)C運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F從點(diǎn)C出發(fā),在線段CD上以每秒1個(gè)單位長(zhǎng)的速度向終點(diǎn)D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)線段AC的長(zhǎng)=________;

(2)當(dāng)PCFEDF相似時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市規(guī)定:出租車起步價(jià)允許行駛的最遠(yuǎn)路程為3千米,超過(guò)3千米的部分按每千米另行收費(fèi),甲說(shuō):我乘這種出租車走了11千米,付了17;乙說(shuō):我乘這種出租車走了23千米,付了35.請(qǐng)你算一算這種出租車的起步價(jià)是多少元?以及超過(guò)3千米后,每千米的車費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為:A1,﹣4),B5,﹣4),C4,﹣1).

1)將△ABC經(jīng)過(guò)平移得到△A1B1C1,若點(diǎn)C的應(yīng)點(diǎn)C1的坐標(biāo)為(25),則點(diǎn)A,B的對(duì)應(yīng)點(diǎn)A1,B1的坐標(biāo)分別為   ;

2)在如圖的坐標(biāo)系中畫出△A1B1C1,并畫出與△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD是正方形,點(diǎn)GBC上的任意一點(diǎn),DE⊥AGE,BF∥DE,交AGF

求證:AF=BF+EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,三角形ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為、,若把三角形ABC向上平移3個(gè)單位長(zhǎng)度,再向左平移1個(gè)單位長(zhǎng)度得到三角形A′B′C′,點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為A′、B′、C′。

1)寫出點(diǎn)A′、B′、C′的坐標(biāo);

2)在圖中畫出平移后的三角形A′B′C′;

3)三角形A′B′C′的面積為_(kāi)____________。

查看答案和解析>>

同步練習(xí)冊(cè)答案