【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)B(-1,4),點(diǎn)A(-7,0),點(diǎn)P是直線上一點(diǎn),且∠ABP=45°,則點(diǎn)P的坐標(biāo)為____.
【答案】(-,-)
【解析】
過點(diǎn)A作AH⊥BA,交BP于H,過點(diǎn)A作x軸的垂線,作BM⊥AM,HN⊥AN,求出直線BH的解析式,然后與聯(lián)立方程組,求解即可.
過點(diǎn)A作AH⊥BA,交BP于H,過點(diǎn)A作x軸的垂線,作BM⊥AM,HN⊥AN,
∵∠ABP=45°
∴AB=AH
∵根據(jù)直角三角形性質(zhì)得:∠AMB=∠ANH, ∠MBA=∠NAH,
∴△BMA≌△ANH,
∴AN=BM=-1-(-7)=6,NH=AM=4 ,
∴H的橫坐標(biāo)是:-7+4=-3
∴H(-3,-6),
設(shè)直線BH為y=kx+b
把H(-3,-6), B(-1,4)代入得
解得
∴直線BH為:y=5x+9
∴y=5x+9與聯(lián)立方程組為
,
解得: ,即P(-,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=mx+n的圖像與x軸交于點(diǎn)B,與反比例函數(shù)(k﹥0)的圖像交于點(diǎn)C,過點(diǎn)C作CH⊥x軸,點(diǎn)D是反比例函數(shù)圖像上的一點(diǎn),直線CD與x軸交于點(diǎn)A,若∠HCB=∠HCA,且BC=10,BA=16.
(1)若OA=11,求k的值;
(2)沿著x軸向右平移直線BC,若直線經(jīng)過H點(diǎn)時(shí)恰好又經(jīng)過點(diǎn)D,求一次函數(shù)函數(shù)y=mx+n的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+2x+c的圖象與x軸交于點(diǎn)A和點(diǎn)B(1,0),以AB為邊在x軸上方作正方形ABCD,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿x軸的正方向勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿CB勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)終點(diǎn)B時(shí),點(diǎn)P停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接DP,過點(diǎn)P作DP的垂線與y軸交于點(diǎn)E.
(1)求二次函數(shù)的解析式及點(diǎn)A的坐標(biāo);
(2)當(dāng)點(diǎn)P在線段AO(點(diǎn)P不與A、O重合)上運(yùn)動(dòng)至何處時(shí),線段OE的長(zhǎng)有最大值,并求出這個(gè)最大值;
(3)在P,Q運(yùn)動(dòng)過程中,求當(dāng)△DPE與以D,C,Q為頂點(diǎn)的三角形相似時(shí)t的值;
(4)是否存在t,使△DCQ沿DQ翻折得到△DC′Q,點(diǎn)C′恰好落在拋物線的對(duì)稱軸上?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中直線:分別與x軸,y軸交于點(diǎn)A和點(diǎn)B,過點(diǎn)A的直線與y軸交于點(diǎn)C,.
(1)求直線的解析式;
(2)若D為線段上一點(diǎn),E為線段上一點(diǎn),當(dāng)時(shí),求的最小值,并求出此時(shí)點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明是個(gè)愛動(dòng)腦筋的學(xué)生,在學(xué)習(xí)了解直角三角形以后,一天他去測(cè)量學(xué)校的旗桿GF的高度,此時(shí)過旗桿的頂點(diǎn)F的陽(yáng)光剛好過身高DE為1.6米的小明的頭頂且在他身后形成的影長(zhǎng)DC=2米.
(1)若旗桿的高度FG是a米,用含a的代數(shù)式表示DG.
(2)小明從點(diǎn)C后退6米在A的測(cè)得旗桿頂點(diǎn)F的仰角為30°,求旗桿FG的高度.(點(diǎn)A、C、D、G在一條直線上, , ,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(a),直線l1:y=kx+b經(jīng)過點(diǎn)A、B,OA=OB=3,直線12:y=x﹣2交y軸于點(diǎn)C,且與直線l1交于點(diǎn)D,連接OD.
(1)求直線11的表達(dá)式;
(2)求△OCD的面積;
(3)如圖(b),點(diǎn)P是直線11上的一動(dòng)點(diǎn);連接CP交線段OD于點(diǎn)E,當(dāng)△COE與△DEP的面積相等時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)對(duì)校內(nèi)外的安全監(jiān)控,創(chuàng)建平安校園,某學(xué)校計(jì)劃增加臺(tái)監(jiān)控?cái)z像設(shè)備,現(xiàn)有甲、乙兩種型號(hào)的設(shè)備,其中每臺(tái)價(jià)格、有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備少元,購(gòu)買臺(tái)甲型設(shè)備比購(gòu)買臺(tái)乙型設(shè)備多元.
甲型 | 乙型 | |
價(jià)格(元/臺(tái)) | ||
有效半徑(米/臺(tái)) |
()求,的值;
()若購(gòu)買該批設(shè)備的資金不超過元,且兩種型號(hào)的設(shè)備均要至少買一臺(tái),學(xué)校有哪幾種購(gòu)買方案?
()在()的條件下,若要求監(jiān)控半徑覆蓋范圍不低于米,為了節(jié)約資金,請(qǐng)你設(shè)計(jì)一種最省錢的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)八個(gè)班共有280名學(xué)生,男女生人數(shù)大致相同,調(diào)查小組為調(diào)查學(xué)生的體質(zhì)健康水平,開展了一次調(diào)查研究,請(qǐng)將下面的過程補(bǔ)全.
收集數(shù)據(jù):
(1)調(diào)查小組計(jì)劃選取40名學(xué)生的體質(zhì)健康測(cè)試成績(jī)作為樣本,下面的取樣方法中,合理的是___________(填字母);
A.抽取九年級(jí)1班、2班各20名學(xué)生的體質(zhì)健康測(cè)試成績(jī)組成樣本
B.抽取各班體育成績(jī)較好的學(xué)生共40名學(xué)生的體質(zhì)健康測(cè)試成績(jī)組成樣本
C.從年級(jí)中按學(xué)號(hào)隨機(jī)選取男女生各20名學(xué)生學(xué)生的體質(zhì)健康測(cè)試成績(jī)組成樣本
整理、描述數(shù)據(jù):
抽樣方法確定后,調(diào)查小組獲得了40名學(xué)生的體質(zhì)健康測(cè)試成績(jī)?nèi)缦拢?/span>
77 83 80 64 86 90 75 92 83 81
85 86 88 62 65 86 97 96 82 73
86 84 89 86 92 73 57 77 87 82
91 81 86 71 53 72 90 76 68 78
整理數(shù)據(jù),如下表所示:
2018年九年級(jí)部分學(xué)生學(xué)生的體質(zhì)健康測(cè)試成績(jī)統(tǒng)計(jì)表
1 | 1 | 2 | 2 | 4 | 5 | 5 | 2 |
分析數(shù)據(jù)、得出結(jié)論
調(diào)查小組將統(tǒng)計(jì)后的數(shù)據(jù)與去年同期九年級(jí)的學(xué)生的體質(zhì)健康測(cè)試成績(jī)(直方圖)進(jìn)行了對(duì)比,
(2)你能從中得到的結(jié)論是_____________,你的理由是________________________________.
(3)體育老師計(jì)劃根據(jù)2018年的統(tǒng)計(jì)數(shù)據(jù)安排75分以下的同學(xué)參加體質(zhì)加強(qiáng)訓(xùn)練項(xiàng)目,則全年級(jí)約有________名同學(xué)參加此項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(-2,3),B(-3,-1),C(-1,1)
(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)180°后的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo);
(3)直接回答:∠AOB與∠A2OB2有什么關(guān)系?
【答案】(1)作圖見解析,(-4,-2);(2)作圖見解析,(2,-3);(3)相等.
【解析】
試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)作圖,寫出點(diǎn)的坐標(biāo);
根據(jù)旋轉(zhuǎn)的性質(zhì)作圖,寫出點(diǎn)的坐標(biāo);
(3)根據(jù)旋轉(zhuǎn)的性質(zhì)得出結(jié)論.
試題解析:(1)作圖如下,點(diǎn)A1的坐標(biāo)(-4,-2).
(2)作圖如下,點(diǎn)A2的坐標(biāo)(2,-3).
(3)相等.
考點(diǎn):1.旋轉(zhuǎn)作圖;2.旋轉(zhuǎn)的性質(zhì).
【題型】解答題
【結(jié)束】
20
【題目】已知函數(shù)y=(m﹣2)xm2+m-4 +2x﹣1是一個(gè)二次函數(shù),求該二次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com