【題目】已知:直線y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,拋物線y=x2+bx+c經(jīng)過點(diǎn)A、B,且交x軸于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P為拋物線上一點(diǎn),且點(diǎn)P在AB的下方,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①試求當(dāng)m為何值時,△PAB的面積最大;
②當(dāng)△PAB的面積最大時,過點(diǎn)P作x軸的垂線PD,垂足為點(diǎn)D,問在直線PD上否存在點(diǎn)Q,使△QBC為直角三角形?若存在,直接寫出符合條件的Q的坐標(biāo)若不存在,請說明理由.
【答案】(1)y=x2﹣x﹣3;(2)①當(dāng)m=3時,△PAB的面積最大,最大值是9,②在直線PD上否存在點(diǎn)Q(3,)或(3,﹣),使△QBC為直角三角形.
【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B的坐標(biāo),再利用待定系數(shù)法即可求出拋物線的解析式;
(2)①過點(diǎn)P作PD⊥x軸于D,交AB于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m,則點(diǎn)P的坐標(biāo)為(m, m2﹣m﹣3),點(diǎn)E的坐標(biāo)為(m, m﹣3),進(jìn)而可得出PE的長度,再利用三角形的面積公式即可得出S△PAB=﹣m2+6m,利用配方法即可解決最值問題;
②利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)Q的坐標(biāo)為(3,y),則CQ2=()2+y2,BC2=9+,BQ2=9+(y+3)2,分∠QCB=90°、∠CBQ=90°及∠CQB=90°三種情況,利用勾股定理即可得出關(guān)于y的方程,解之即可得出結(jié)論.
(1)∵直線y=x﹣3與x軸、y軸分別交于點(diǎn)A、B,
∴點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(0,﹣3).
將A(6,0)、B(0,﹣3)代入y=x2+bx+c,得:
,解得:,
∴拋物線的解析式為y=x2﹣x﹣3.
(2)①過點(diǎn)P作PD⊥x軸于D,交AB于點(diǎn)E,如圖1所示.
設(shè)點(diǎn)P的橫坐標(biāo)為m,則點(diǎn)P的坐標(biāo)為(m,m2﹣m﹣3),點(diǎn)E的坐標(biāo)為(m,m﹣3),
∴PE=m﹣3﹣(m2﹣m﹣3)=﹣m2+2m,
∴S△PAB=×PE×(AD+DO)=×(﹣m2+2m)×6=﹣m2+6m=﹣(m﹣3)2+9,
∴當(dāng)m=3時,△PAB的面積最大,最大值是9.
②當(dāng)y=0時,有x2﹣x﹣3=0,
解得:x1=﹣,x2=6,
∴點(diǎn)C的坐標(biāo)為(﹣,0).
設(shè)點(diǎn)Q的坐標(biāo)為(3,y),
則CQ2=()2+y2,BC2=9+,BQ2=9+(y+3)2.
當(dāng)∠QCB=90°時,有CQ2+BC2=BQ2,
即()2+y2+9+=9+(y+3)2,
解得:y=;
當(dāng)∠CBQ=90°時,有BC2+BQ2=CQ2,
即9++9+(y+3)2=()2+y2,
解得:y=﹣;
當(dāng)∠CQB=90°時,有BQ2+CQ2=BC2,
即()2+y2+9+(y+3)2=9+,
方程無解.
綜上所示:在直線PD上否存在點(diǎn)Q(3,)或(3,﹣),使△QBC為直角三角形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點(diǎn)O,則四邊形AB1OD的面積是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,過點(diǎn)C作CF∥BE交DE的延長線于F,連接CD.
(1)求證:四邊形BCFE是菱形;
(2)在不添加任何輔助線和字母的情況下,請直接寫出圖中與△BEC面積相等的所有三角形(不包括△BEC).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某學(xué)生在旗桿EF與實(shí)驗(yàn)樓CD之間的A處,測得∠EAF=60°,然后向左移動10米到B處,測得∠EBF=30°,∠CBD=45°,tan∠CAD= .
(1)求旗桿EF的高(結(jié)果保留根號);
(2)求旗桿EF與實(shí)驗(yàn)樓CD之間的水平距離DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,且AB=6,點(diǎn)M為⊙O外一點(diǎn),且MA,MC分別切⊙O于點(diǎn)A、C.點(diǎn)D是兩條線段BC與AM延長線的交點(diǎn).
(1)求證:DM=AM;
(2)直接回答:
①當(dāng)CM為何值時,四邊形AOCM是正方形?
②當(dāng)CM為何值時,△CDM為等邊三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(﹣2,﹣2),B(0,3),C(3,3),D(4,﹣2),y是關(guān)于x的二次函數(shù),拋物線y1經(jīng)過點(diǎn)A、B、C,拋物線y2經(jīng)過點(diǎn)B、C、D,拋物線y3經(jīng)過點(diǎn)A、B、D,拋物線y4經(jīng)過點(diǎn)A、C、D.下列判斷:
①四條拋物線的開口方向均向下;
②當(dāng)x<0時,至少有一條拋物線表達(dá)式中的y均隨x的增大而減。
③拋物線y1的頂點(diǎn)在拋物線y2頂點(diǎn)的上方;
④拋物線y4與y軸的交點(diǎn)在點(diǎn)B的上方.
所有正確結(jié)論的序號為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,AD=6,點(diǎn) E 是對角線 AC 上一點(diǎn),連接 DE,過點(diǎn) E 作 EF⊥ ED,交 AB 于點(diǎn) F,連接 DF,交 AC 于點(diǎn) G,將△EFG 沿 EF 翻折,得到△EFM,連接DM,交 EF 于點(diǎn) N,若點(diǎn) F 是 AB 邊的中點(diǎn),則 △EDM 的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點(diǎn),A點(diǎn)的坐標(biāo)為,B點(diǎn)的坐標(biāo)為,連接,過B作軸,垂足為C.
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)在射線上是否存在一點(diǎn)D,使得是直角三角形,求出所有可能的D點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點(diǎn)A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點(diǎn)O,則四邊形AB1OD的面積是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com