【題目】如圖,在平行四邊形ABCD中,已知對(duì)角線AC、BD相交于點(diǎn)O,若E、F是AC上兩動(dòng)點(diǎn),分別從A、C兩點(diǎn)以相同的速度1cm/s向點(diǎn)O運(yùn)動(dòng).
(1)當(dāng)E與F不重合時(shí),四邊形DEBF是否是平行四邊形?請(qǐng)說明理由;
(2)若AC=16cm,BD=12cm,點(diǎn)E,F(xiàn)在運(yùn)動(dòng)過程中,四邊形DEBF能否為矩形?如能,求出此時(shí)的運(yùn)動(dòng)時(shí)間t的值,如不能,請(qǐng)說明理由.
【答案】
(1)解:當(dāng)E與F不重合時(shí),四邊形DEBF是平行四邊形
理由:∵四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD;
∵E、F兩動(dòng)點(diǎn),分別從A、C兩點(diǎn)以相同的速度向C、A運(yùn)動(dòng),
∴AE=CF;
∴OE=OF;
∴BD、EF互相平分;
∴四邊形DEBF是平行四邊形
(2)解:∵四邊形DEBF是平行四邊形,
∴當(dāng)BD=EF時(shí),四邊形DEBF是矩形;
∵BD=12cm,
∴EF=12cm;
∴OE=OF=6cm;
∵AC=16cm;
∴OA=OC=8cm;
∴AE=2cm或AE=14cm;
由于動(dòng)點(diǎn)的速度都是1cm/s,
所以t=2(s)或t=14(s);
故當(dāng)運(yùn)動(dòng)時(shí)間t=2s或14s時(shí),以D、E、B、F為頂點(diǎn)的四邊形是矩形.
【解析】(1)判斷四邊形DEBF是否為平行四邊形,需證明其對(duì)角線是否互相平分;已知了四邊形ABCD是平行四邊形,故OB=OD;而E、F速度相同,方向相反,故OE=OF;由此可證得BD、EF互相平分,即四邊形DEBF是平行四邊形;(2)若以D、E、B、F為頂點(diǎn)的四邊形是矩形,則必有BD=EF,可據(jù)此求出時(shí)間t的值.
【考點(diǎn)精析】掌握平行四邊形的判定與性質(zhì)和矩形的判定方法是解答本題的根本,需要知道若一直線過平行四邊形兩對(duì)角線的交點(diǎn),則這條直線被一組對(duì)邊截下的線段以對(duì)角線的交點(diǎn)為中點(diǎn),并且這兩條直線二等分此平行四邊形的面積;有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】多邊形每一個(gè)內(nèi)角都等于150°,則從此多邊形一個(gè)頂點(diǎn)發(fā)出的對(duì)角線有( )
A. 7條 B. 8條 C. 9條 D. 10條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為2,△ABE時(shí)等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列代數(shù)式中a,﹣2ab,x+y,x2+y2 , ﹣1,單項(xiàng)式共有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一種長方體集裝箱,其內(nèi)空長為5米,集裝箱截面的高4.5米,寬3.4米,用這樣的集裝箱運(yùn)長為5米,橫截面的外圓直徑為0.8米的圓柱形鋼管,為了盡可能多運(yùn),排的方案是:圓柱長5米放置于集裝箱內(nèi)空長,圓柱兩底面放置于集裝箱截面,截面的排法是:
A. 橫排,每行分別為4、3、4、3、4、3
B. 橫排,每行分別為4、4、4、4、4、3
C. 豎排,每列分別為5、4、5、4、5
D. 豎排,每列分別為5、5、5、5、4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=8,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)F處,AF與BC交于點(diǎn)E.
(1)判斷△AEC的形狀,并說明理由;
(2)求△AEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示:
(1)∵_(dá)_______=__________(已知)
∴AB∥CD(同位角相等,兩條直線平行)
(2)∵_(dá)________=__________(已知)
∴AB∥CD(內(nèi)位角相等,兩條直線平行)
(3)∵_(dá)________+_________=180(已知)
∴AB∥CD(同旁內(nèi)角互補(bǔ),兩條直線平行)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com