【題目】一個有進水管與出水管的容器,從某時刻開始的4分內(nèi)只進水不出水,在隨后的若干分內(nèi)既進水又出水,之后只有出水不進水,每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量(單位:升)與時間(單位:分)之間的關(guān)系如圖所示,則進水速度是______/分,出水速度是______/分,的值為______.

【答案】5 3.75 15

【解析】

首先根據(jù)圖象中的數(shù)據(jù)可求出進水管以及出水管的進出水速度,進而利用容器內(nèi)的水量列出方程求出即可.

解:由圖象可得出:
進水速度為:20÷4=5(升/分鐘),
出水速度為:5-30-20÷12-4=3.75(升/分鐘),
a-4×5-3.75+20=24-a×3.75
解得:a=15

故答案為:5;3.75;15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別平分的外角、內(nèi)角、外角.以下結(jié)論:①;②;③平分;④;⑤.其中正確的結(jié)論有( ).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有九張背面一模一樣的撲克牌,正面分別為:紅桃A、紅桃2、紅桃3、紅桃4、黑桃A、黑桃2、黑桃3、黑桃4、黑桃5.

(1)現(xiàn)將這九張撲克牌混合均勻后背面朝上放置,若從中摸出一張,求正面寫有數(shù)字3的概率是多少?

(2)現(xiàn)將這九張撲克牌分成紅桃和黑桃兩部分后背面朝上放置,并將紅桃正面數(shù)字記作m,黑桃正面數(shù)字記作n,若從黑桃和紅桃中各任意摸一張,求關(guān)于x的方程mx2+3x+=0有實根的概率.(用列表法或畫樹形圖法解,A代表數(shù)字1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分)如圖,在中, , ,點在邊上運動, 平分交邊于點, 垂足為, 垂足為

)當(dāng)時,求證:

)探究: 為何值時, 相似?

)直接寫出: __________時,四邊形的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,的中點,厘米,,厘米.若點在線段上以每秒3厘米的速度從點向終點運動,同時點在線段上從點向終點運動.

1)若點的速度與點的速度相等,經(jīng)1秒鐘后,請說明;

2)若點的速度與點的速度不相等,當(dāng)點的速度為多少時,能夠使.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形 ABCO,邊長是 4,點 D(a0),以 AD 為邊在AD 的右側(cè)作等腰 RtADE,∠ADE90°,連接 OE,則 OE 的最小值為__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,直線,點為平面內(nèi)一點,連接.

1)如圖1,點在直線、之間,若,,求的度數(shù).

2)如圖2,點在直線之間,的角平分線相交于點,寫出之間的數(shù)量關(guān)系,并說明理由.

3)如圖3,點在直線下方,的角平分線相交于點,直接寫出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀以下材料:

對數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J. Nplcr,1550-1617年),納皮爾發(fā)明對數(shù)是在指數(shù)書寫方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707-1783年)才發(fā)現(xiàn)指數(shù)與對數(shù)之間的聯(lián)系.

對數(shù)的定義:一般地,若,那么叫做以為底的對數(shù),記作:.比如指數(shù)式可以轉(zhuǎn)化為,對數(shù)式可以轉(zhuǎn)化為.

我們根據(jù)對數(shù)的定義可得到對數(shù)的一個性質(zhì):;理由如下:

設(shè),,則

,由對數(shù)的定義得

又∵

解決以下問題:

1)將指數(shù)轉(zhuǎn)化為對數(shù)式______;

2)證明

3)拓展運用:計算______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售A,B兩種品牌的教學(xué)設(shè)備,這兩種教學(xué)設(shè)備的進價和售價如下表所示:

A

B

進價(萬元/套)

1.5

1.2

售價(萬元/套)

1.65

1.4

該商場計劃購進兩種教學(xué)設(shè)備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。

(毛利潤=(售價 - 進價)×銷售量)

(1)該商場計劃購進A,B兩種品牌的教學(xué)設(shè)備各多少套?

(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設(shè)備的購進數(shù)量,增加B種設(shè)備的購進數(shù)量,已知B種設(shè)備增加的數(shù)量是A種設(shè)備減少數(shù)量的1.5倍。若用于購進這兩種教學(xué)設(shè)備的總資金不超過69萬元,問A種設(shè)備購進數(shù)量至多減少多少套?

查看答案和解析>>

同步練習(xí)冊答案