【題目】中,,的平分線,,,求的度數(shù).

【答案】30°;20°

【解析】

CDAB與∠B=60°,根據(jù)兩銳角互余,即可求得∠BCD的度數(shù);由∠A=20°,∠B=60°,求得∠ACB的度數(shù),由CE是∠ACB的平分線,可求得∠ACE的度數(shù),然后根據(jù)三角形外角的性質(zhì),求得∠CEB的度數(shù),繼而可得.

(1)CDAB,

∴∠CDB=90°,

∵∠B=60°,

∴∠BCD=90°B=90°60°=30°

∵∠A=20°,B=60°,A+B+ACB=180°,

∴∠ACB=100°,

CE是∠ACB的平分線,

∴∠ACE=ACB=50°,

∴∠CEB=A+ACE=20°+50°=70°,

ECD=90°70°=20°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為6cm,點F從點B出發(fā),沿射線AB方向以1cm/秒的速度移動,點E從點D出發(fā),向點A1cm/秒的速度移動(不到點A).設(shè)點EF同時出發(fā)移動t秒.

1)在點E,F移動過程中,連接CE,CF,EF,則△CEF的形狀是 ,始終保持不變;

2)如圖2,連接EF,設(shè)EFBD于點M,當(dāng)t=2時,求AM的長;

3)如圖3,點G,H分別在邊ABCD上,且GH=cm,連接EF,當(dāng)EFGH的夾角為45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料并回答問題:

我們知道,乘法公式可以用平面幾何圖形的面積來表示,實際上還有一些代數(shù)恒等式也可以用這種形式表示,如:,就可以用圖1或圖2等圖形的面積表示.

1)請寫出圖3所表示的代數(shù)恒等式: ;

2)試畫一個幾何圖形,使它的面積表示:;

3)請仿照上述方法另寫一個含有,的代數(shù)恒等式,并畫出與它對應(yīng)的幾何圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b(k,b為常數(shù),k≠0)的圖象與反比例函數(shù)的圖象交于A、B兩點,且與x軸交于點C,與y軸交于點D,A點的橫坐標(biāo)與B點的縱坐標(biāo)都是3.

(1)求一次函數(shù)的表達(dá)式;

(2)求△AOB的面積;

(3)寫出不等式kx+b>﹣的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,BCAC3,點DBC邊上一點,∠DAC30°,點EAD邊上一點,CE繞點C逆時針旋轉(zhuǎn)90°得到CF,連接DFDF的最小值是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)在如圖所示的位置.

1)將向右平移4個單位,向下平移3個單位得,請在網(wǎng)格中作出;

2)若連接,則這兩條線段的位置關(guān)系是  ;

3的面積為  

4)在整個平移過程中,點的運(yùn)動路徑長為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是常見的安全標(biāo)記,其中是軸對稱圖形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.

b2>4ac; 4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點,則y1y2

上述4個判斷中,正確的是(  )

A. ①② B. ①④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第次從原點運(yùn)動到點,第次接著運(yùn)動到點,第次接著運(yùn)動到點按這樣的運(yùn)動規(guī)律,經(jīng)過第次運(yùn)動后,動點的坐標(biāo)是(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案