【題目】辰星旅游度假村有甲種風(fēng)格客房15間,乙種風(fēng)格客房20間.按現(xiàn)有定價(jià):若全部入住,一天營業(yè)額為8500元;若甲、乙兩種風(fēng)格客房均有10間入住,一天營業(yè)額為5000元.
(1)求甲、乙兩種客房每間現(xiàn)有定價(jià)分別是多少元?
(2)度假村以乙種風(fēng)格客房為例,市場情況調(diào)研發(fā)現(xiàn):若每個(gè)房間每天按現(xiàn)有定價(jià),房間會全部住滿;當(dāng)每個(gè)房間每天的定價(jià)每增加20元時(shí),就會有兩個(gè)房間空閑.如果游客居住房間,度假村需對每個(gè)房間每天支出80元的各種費(fèi)用.當(dāng)每間房間定價(jià)為多少元時(shí),乙種風(fēng)格客房每天的利潤最大,最大利潤是多少元?
【答案】(1)甲、乙兩種客房每間現(xiàn)有定價(jià)分別是300元、200元;(2)每間房間定價(jià)為240元時(shí),乙種風(fēng)格客房每天的利潤最大,最大利潤是2560元.
【解析】
(1)根據(jù)題意“若全部入住,一天營業(yè)額為8500元;若甲、乙兩種風(fēng)格客房均有10間入住,一天營業(yè)額為5000元”設(shè)未知數(shù)列出相應(yīng)的二元一次方程組,解方程組即可解答本題;
(2)根據(jù)題意列出關(guān)于乙種房價(jià)的函數(shù)關(guān)系式,然后根據(jù)二次函數(shù)的性質(zhì)即可解答本題.
解:設(shè)甲、乙兩種客房每間現(xiàn)有定價(jià)分別是元、元,
根據(jù)題意,得:,
解得,
答:甲、乙兩種客房每間現(xiàn)有定價(jià)分別是300元、200元;
(2)設(shè)每天的定價(jià)增加了個(gè)20元,則有個(gè)房間空閑,
根據(jù)題意得:,
∵,
∴當(dāng)時(shí),取得最大值,最大值為2560,此時(shí)房間的定價(jià)為元.
答:當(dāng)每間房間定價(jià)為240元時(shí),乙種風(fēng)格客房每天的利潤最大,最大利潤是2560元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
(1)用配方法求出該函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸;
(2)在如圖所示的平面直角坐標(biāo)系中畫出該函數(shù)的大致圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有個(gè)填寫運(yùn)算符號的游戲:在“”中的每個(gè)□內(nèi),填入中的某一個(gè)(可重復(fù)使用),然后計(jì)算結(jié)果.
(1)計(jì)算:;
(2)若請推算□內(nèi)的符號;
(3)在“”的□內(nèi)填入符號后,使計(jì)算所得數(shù)最小,直接寫出這個(gè)最小數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)過點(diǎn)B作BC⊥x軸,垂足為C,連接AC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對稱,連接CN.
(1)如圖,當(dāng)0°<α<45°時(shí):
①依題意補(bǔ)全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫出線段EF長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:“如圖,ABCD的對角線相交于點(diǎn)O,過點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,請根據(jù)上述條件,寫出一個(gè)正確結(jié)論”其中四位同學(xué)寫出的結(jié)論如下:
小青:;小何:四邊形DFBE是正方形;
小夏:;小雨:.
這四位同學(xué)寫出的結(jié)論中不正確的是
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,函數(shù)的圖象與軸有個(gè)交點(diǎn),函數(shù)的圖象與軸有個(gè)交點(diǎn),則與的數(shù)量關(guān)系是( )
A.B.或
C.或D.或
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有若干個(gè)除顏色外其余均相同的紅、黃、藍(lán)三種顏色的小球,其中紅球2個(gè),藍(lán)球1個(gè),若從中任意摸出一個(gè)球,摸到的球是紅球的概率為.
(1)求袋中黃球的個(gè)數(shù);
(2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,利用樹狀圖或劉表格求兩次摸到球的顏色是紅色與黃色的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在Rt△ABC 中, ,D、E是斜邊BC上兩動點(diǎn),且∠DAE=45°,將△繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90后,得到△,連接.
(1)試說明:△≌△;
(2)當(dāng)BE=3,CE=9時(shí),求∠BCF的度數(shù)和DE的長;
(3)如圖2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜邊BC所在直線上一點(diǎn),BD=3,BC=8,求DE2的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com