【題目】如圖,中,的平分線與的平分線相交于點.

⑴.若,求度數(shù);

⑵.由第⑴小題的計算,發(fā)現(xiàn)有什么關(guān)系?它們是不是一定有這種關(guān)系?請作出說明.

【答案】⑴. ; ⑵.,理由詳見解析.

【解析】

⑴根據(jù)三角形內(nèi)角和定理,已知∠ABC=60,ACB=40,易求∠A

D度數(shù).

(2)根據(jù)三角形內(nèi)角和定理以及角平分線性質(zhì),先求出∠D的等式,再與∠A比較即可解答.

,ABC=60,ACB=40,∴∠A=180-ABC-ACB=80

BD為∠ABC的角平分線,CD為∠ACE的角平分線,

∴∠DBC=ABC=

ACD=(180-ACB)=

∴∠D=180-DBC-ACB-ACD=180-30-40-70=40

∴∠A=80,D=40

(2)通過第(1)的計算,得到∠A=2D,

理由如下

∵∠ACE=A+ABC

∴∠ACD+ECD=A+ABD+DBE,DCE=D+DBC

BD平分∠ABC,CD平分∠ACE,

∴∠ABD=DBE,ACD=ECD

∴∠A=2(DCE-DBC),

D=DCE-DBC,

∴∠A=2D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線C1:y=ax2+4x+4a(0<a<2)

(1)當C1與x軸有唯一一個交點時,求此時C1的解析式;
(2)如圖①,若A(1,yA),B(0,yB),C(﹣1,yC)三點均在C1上,連BC作AE∥BC交拋物線C1于E,求點E到y(tǒng)軸的距離;
(3)若a=1,將拋物線C1先向右平移3個單位,再向下平移2個單位得到拋物線C2 , 如圖②,拋物線C2與x軸相交于點M、N(M點在N點的左邊),拋物線的對稱軸交x軸于點F,過點F的直線l與拋物線C2相交于P,Q(P在第四象限)且SFMQ=2SFNP , 求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )

A.∠ABD=∠C
B.∠ADB=∠ABC
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD中,E、F分別是AB、AD邊上的點,DE與CF交于點G.

(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證:△ADE∽△DCF;
(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當∠B與∠EGC滿足什么關(guān)系時, 成立?并證明你的結(jié)論;
(3)如圖③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF,請直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣3,﹣1,0,1,3這五個數(shù)中隨機抽取一個數(shù)記為a,再從剩下的四個數(shù)中任意抽取一個數(shù)記為b,恰好使關(guān)于x,y的二元一次方程組 有整數(shù)解,且點(a,b)落在雙曲線 上的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從一個建筑物的A處測得對面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測點與樓的水平距離AD為31m,樓BC的高度大約為多少?(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD(四個邊相等,四個角為直角)中,E,F(xiàn)分別為AD,BC的中點,P為對角線BD上的一個動點,則下列線段的長等于AP+EP最小值的是( )

A. AB B. DE C. AF D. BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為48和36,求△EDF的面積________.

查看答案和解析>>

同步練習冊答案