【題目】如圖,小河上有一拱橋,拱橋及河道的截面輪廓線由拋物線的一部分ACB

矩形的三邊AE,ED,DB組成,已知河底ED是水平的,ED16m,AE8m,拋物線的頂點(diǎn)CED

距離是11m,以ED所在的直線為x軸,拋物線的對稱軸為y軸建立平面直角坐標(biāo)系.

(1)求拋物線的解析式;

(2)已知從某時(shí)刻開始的40h內(nèi),水面與河底ED的距離h(單位:m)隨時(shí)間t(單位:h)的變化滿足函數(shù)

關(guān)系且當(dāng)水面到頂點(diǎn)C的距離不大于5m時(shí),需禁止船只通行,請通過計(jì)算說明:在這一時(shí)段內(nèi),需多少小時(shí)禁止船只通行?

【答案】解:(1)設(shè)拋物線的為y=ax2+11,由題意得B8,8),64a+11=8,解得。

拋物線的解析式y=x2+11。

2)畫出的圖象:

水面到頂點(diǎn)C的距離不大于5米時(shí),即水面與河底ED的距離h≥6,

當(dāng)h=6時(shí),,解得t1=35,t2=3

∴353=32(小時(shí))。

答:需32小時(shí)禁止船只通行。

【解析】二次函數(shù)的應(yīng)用,待定系數(shù)法,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系。

1)根據(jù)拋物線特點(diǎn)設(shè)出二次函數(shù)解析式,把B坐標(biāo)代入即可求解。

2)水面到頂點(diǎn)C的距離不大于5米時(shí),即水面與河底ED的距離h至多為6,把6代入所給二次函數(shù)關(guān)系式,求得t的值,相減即可得到禁止船只通行的時(shí)間。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P,Q是方格紙中的兩格點(diǎn),請按要求畫出以PQ為對角線的格點(diǎn)四邊形.

(1)在圖1中畫出一個(gè)面積最小的¨PAQB;

(2)在圖2中畫出一個(gè)四邊形PCQD,使其是軸對稱圖形而不是中心對稱圖形,且另一條對角線CD由線段PQ以某一格點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn)得到.注:圖1,圖2在答題紙上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說明AD∥BE.

解:∵AB∥CD(已知)

∴∠4=∠

∵∠3=∠4(已知)

∴∠3=∠

∵∠1=∠2(已知)

∴∠1+∠CAF=∠2+∠CAF(

即∠ =∠

∴∠3=∠

∴AD∥BE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)yx+3的圖象分別與x軸、y軸相交于點(diǎn)A、B,且與經(jīng)過點(diǎn)C2,0)的一次函數(shù)ykx+b的圖象相交于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為4,直線CDy軸相交于點(diǎn)E

1)直線CD的函數(shù)表達(dá)式為   ;(直接寫出結(jié)果)

2)點(diǎn)Q為線段DE上的一個(gè)動點(diǎn),連接BQ

①若直線BQ將△BDE的面積分為12兩部分,試求點(diǎn)Q的坐標(biāo);

②點(diǎn)Q是否存在某個(gè)位置,將△BQD沿著直線BQ翻折,使得點(diǎn)D恰好落在直線AB下方的坐標(biāo)軸上?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.

證明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90°(垂直定義)

∴DG∥AC(

∴∠2=

∵∠1=∠2(已知)

∴∠1=∠ (等量代換)

∴EF∥CD(

∴∠AEF=∠

∵EF⊥AB(已知)

∴∠AEF=90°(

∴∠ADC=90°(

∴CD⊥AB(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD中,AD=3cm,CD=1cm,B=45°,點(diǎn)P從點(diǎn)A出發(fā),沿AD方向勻速運(yùn)動,速度為3cm/s;點(diǎn)Q從點(diǎn)C出發(fā),沿CD方向勻速運(yùn)動,速度為1cm/s,連接并延長QPBA的延長線于點(diǎn)M,過MMNBC,垂足是N,設(shè)運(yùn)動時(shí)間為t(s)(0<t<1),解答下列問題:

(1)是否存在時(shí)刻t,使點(diǎn)P在∠BCD的平分線上;

(2)設(shè)四邊形ANPM的面積為S(cm),求St之間的函數(shù)關(guān)系式;

(3)是否存在某一時(shí)刻t,使四邊形ANPMABCD面積相等,若存在,求出相應(yīng)的t值,若不存在,說明理由;

(4)求t為何值時(shí),ABN為等腰三角形

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將含有30°角的直角三角板ABC放入平面直角坐標(biāo)系,頂點(diǎn)A,B分別落在x、y軸的正半軸上,∠OAB60°,點(diǎn)A的坐標(biāo)為(1,0),將三角板ABC沿x軸向右作無滑動的滾動(先繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)60°,再繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°)當(dāng)點(diǎn)B第一次落在x軸上時(shí),則點(diǎn)B運(yùn)動的路徑與坐標(biāo)軸圍成的圖形面積是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:OB,OMON內(nèi)的射線.

如圖1,若OM平分,ON平分當(dāng)射線OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),______

也是內(nèi)的射線,如圖2,若,OM平分ON平分,當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大。

的條件下,若,當(dāng)O點(diǎn)以每秒的速度逆時(shí)針旋轉(zhuǎn)t秒,如圖3,若3,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是真命題的是( )

A. 有兩邊和其中一邊的對角對應(yīng)相等的兩個(gè)三角形全等

B. 兩條平行直線被第三條直線所截,則一組同旁內(nèi)角的平分線互相垂直

C. 三角形的一個(gè)外角等于兩個(gè)內(nèi)角的和

D. 等邊三角形既是中心對稱圖形,又是軸對稱圖形

查看答案和解析>>

同步練習(xí)冊答案