分析 先根據(jù)等腰三角形三線合一的性質(zhì)得出∠BAD=∠CAD,再由三角形的高的定義得出∠BEC=∠ADC=90°,根據(jù)直角三角形兩銳角互余得到∠EBC+∠C=90°,∠CAD+∠C=90°,根據(jù)同角的余角相等得出∠EBC=∠CAD,等量代換得到∠BAD=∠CAD=∠EBC.
解答 證明:∵AB=AC,AD⊥BC,
∴∠BAD=∠CAD.
∵BE⊥CE,AD⊥BC,
∴∠BEC=∠ADC=90°,
∴∠EBC+∠C=90°,∠CAD+∠C=90°,
∴∠EBC=∠CAD,
∴∠BAD=∠CAD=∠EBC.
點(diǎn)評(píng) 本題考查了等腰三角形三線合一的性質(zhì),三角形的高的定義,直角三角形的性質(zhì),余角的性質(zhì),證明出∠BAD=∠CAD,∠EBC=∠CAD是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a=b+2k | B. | a=b-2k | C. | k<b<0 | D. | a<k<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+3(n-1) | B. | 4n | C. | 4n+1 | D. | 3n+4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com