【題目】已知拋物線與軸交于和兩點(diǎn),與軸正半軸交于點(diǎn),若的面積,
(1)求拋物線的對稱軸及解析式.
(2)若為對稱軸上一點(diǎn),且,以、為頂點(diǎn)作正方形(、、、順時(shí)針排列),若正方形有兩個(gè)頂點(diǎn)在拋物線上,求的值.
(3)如圖,、兩點(diǎn)關(guān)于對稱軸對稱,一次函數(shù)過點(diǎn),且與拋物線只有唯一一個(gè)公共點(diǎn),平移直線交拋物線于、兩點(diǎn)(點(diǎn)在點(diǎn)上方),請你猜想與的數(shù)量關(guān)系并加以證明.
【答案】(1)對稱軸是直線,;(2)或;(3)或,證明見解析
【解析】
(1)根據(jù)對稱軸公式可求得對稱軸,由面積以及點(diǎn)的坐標(biāo)可求得拋物線解析式;
(2)分情況討論,設(shè)P(1,n),根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到D,E點(diǎn)坐標(biāo),代入解析式即可求得n值;
(3)分情況討論,求出關(guān)于D點(diǎn)的切線方程,平移切線與拋物線聯(lián)立,可得關(guān)于交點(diǎn)的坐標(biāo)關(guān)系式,利用直角三角形性質(zhì)即可求得角度之間關(guān)系.
(1)解:對稱軸為直線,
∵,,
∴,即,,
由面積,得,
∴,
、代入可得;,
即拋物線解析式為;;
(2)解:由題意知,
①如左圖, 過P作PM⊥y軸,PN⊥x軸,
設(shè)D點(diǎn)坐標(biāo)為(a,b),由旋轉(zhuǎn)90°可得△CMP≌△DNP,
∴CM=DN,PM=PN,
∴,,
∴,,
∴,
將D點(diǎn)代入,
∴,解得或4(舍),
②如圖,
同理可求得,
代入拋物線解析式,,
解得(舍去)或,
∴或;
(3)①若點(diǎn)在左側(cè),,理由如下
易知D(2,3),過點(diǎn)的拋物線的切線為,
設(shè)平移后的解析式為,
與拋物線聯(lián)立得:,
,,
∴;
②若點(diǎn)在右側(cè),,理由如下
同理可得,
所以,
綜上所述,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點(diǎn)D,連接AD,過點(diǎn)D作DE⊥AC,垂足為點(diǎn)E,交AB的延長線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(2)如果⊙O的半徑為5,cos∠DAB=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的3月15日是“國際消費(fèi)者權(quán)益日”,許多家居商城都會(huì)利用這個(gè)契機(jī)進(jìn)行打折促銷活動(dòng).甲賣家的某款沙發(fā)每套成本為5000元,在標(biāo)價(jià)8000元的基礎(chǔ)上打9折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價(jià)吸引買主,問最多降價(jià)多少元,才能使利潤率不低于20%?
(2)據(jù)媒體爆料,有一些賣家先提高商品價(jià)格后再降價(jià)促銷,存在欺詐行為.乙賣家也銷售相同的沙發(fā),其成本、標(biāo)價(jià)與甲賣家一致,以前每周可售出8套,現(xiàn)乙賣家先將標(biāo)價(jià)提高,再大幅降價(jià)元,使得這款沙發(fā)在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了,這樣一天的利潤達(dá)到了50000元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校七年級4個(gè)班共180人的體質(zhì)健康情況,從各班分別抽取同樣數(shù)量的男生和女生組成一個(gè)樣本,如圖是根據(jù)樣本繪制的條形圖和扇形圖.
(1)本次抽查的樣本容量是______.
(2)請補(bǔ)全條形圖和扇形圖中的百分?jǐn)?shù);
(3)請你估計(jì)全校七年級共有多少人優(yōu)秀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(,0)和點(diǎn)B(1,),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在對稱軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對稱軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=∠MFO時(shí),請直接寫出線段BM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點(diǎn)P(2,4).已知點(diǎn)A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點(diǎn)O移動(dòng)到點(diǎn)P,得到△A′PB′.過點(diǎn)A′作A′C∥y軸交雙曲線于點(diǎn)C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k>0)的圖象相交于A,B兩點(diǎn),與x軸相交于點(diǎn)C,連接OB,且BOC的面積為2.則k=______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com