【題目】如圖1,△ABC中,CACB,∠ACB120°,AB3,點(diǎn)EF在直線AB上,且∠ECF60°.

1)求AC邊的長(zhǎng);

2)如圖1,點(diǎn)EF在線段AB上時(shí),若EFAF,求證:BEEF;

3)如圖2,FAB上,EAB的延長(zhǎng)線上時(shí),AFmBEn,則n   (用含m的式子表示).

【答案】1AC;(2)詳見解析;(3

【解析】

1)過點(diǎn)CCDAB于點(diǎn)D,由直角三角形的性質(zhì)可得AB2CD,AC2CD,即可求AC的值;

2)作點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn)G,連接FG、CG、EG,由SAS可證GCE≌△BCE,可得EGBE,∠B=∠EGC,即可證FEG為等邊三角形,可得結(jié)論;

2)將BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到GCH,連接AG,過點(diǎn)HDHCG,由旋轉(zhuǎn)的性質(zhì)可得BCCG,BEGHn,∠BCG60°,∠CGH=∠CBE180°﹣∠ACB150°,通過證明NCF∽△DCH,可得,即可求解.

1)如圖1,過點(diǎn)CCDAB于點(diǎn)D,

CACB,∠ACB120°,

∴∠A=∠B30°,ADBD

AC2CD,BDADCD

AB3,

AD+BDAB32CD

CD

AC

2)如圖11,作點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn)G,連接FG、CG、EG,

G為點(diǎn)A關(guān)于直線CF的對(duì)稱點(diǎn);

∴△ACF≌△GCF,

ACCG,∠ACF=∠GCF,∠FGC=∠A

又∵ACBC,

CGCB,

∵∠ACB120°,∠ECF60°,

∴∠ECG60°﹣∠GCF60°﹣∠ACF,∠BCE60°﹣∠ACF,

∴∠ECG=∠ECB

GCEBCE

∴△GCE≌△BCESAS),

EGBE,∠B=∠EGC,

∵∠ACB120°

∴∠A+B60°,

∴∠EGC+FGC60°,

又∵AFEFFG,

∴△FEG為等邊三角形,

EFEGBE,即BEEF

2)如圖2,將BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到GCH,連接AG,過點(diǎn)HDHCG,

∵將BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到GCH

BCCG,BEGHn,∠BCG60°,∠CGH=∠CBE180°﹣∠ACB150°

∴∠DGH180°﹣∠CGH30°,且DHCG

DHGH,GDDHn,

∵∠ACB120°,∠BCG60°

∴∠ACG=∠BCG60°,且ACBC

CGAB,ANBN,CN

FNm

∵∠CNF=∠CDH90°,∠NCF=∠DCH

∴△NCF∽△DCH

n

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,DM,EN分別垂直平分AB和AC,交BC于點(diǎn)D,E,若∠DAE=50°°,則∠BAC=________,若△ADE的周長(zhǎng)為19cm,則BC=_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O(00),A(0,1)是正方形OAA1B的兩個(gè)頂點(diǎn),以OA1對(duì)角線為邊作正方形OA1A2B1,再以正方形的對(duì)角線OA2作正方形OA2A3B2,,依此規(guī)律,則點(diǎn)A7的坐標(biāo)是(  )

A.(-80)B.(8,-8)C.(-8,8)D.(0,16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是矩形ABCD的對(duì)角線AC上一點(diǎn),過點(diǎn)PEFBC,分別交AB,CDE、F,連接PB、PD.若AE2,PF6,則圖中陰影部分的面積為( 。

A.10B.12C.16D.18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:

1)畫線段ADBC且使AD=BC,連接CD;

2)線段AC的長(zhǎng)為   ,CD的長(zhǎng)為   AD的長(zhǎng)為_____;

3ACD   三角形,四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1y=x-3x軸,y軸分別交于點(diǎn)A和點(diǎn)B

1)求點(diǎn)A和點(diǎn)B的坐標(biāo);

2)將直線l1向上平移6個(gè)單位后得到直線l2,求直線l2的函數(shù)解析式;

3)設(shè)直線l2x軸的交點(diǎn)為M,則MAB的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=6,AC=10ADBC邊上的中線,且AD=4,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接CE

(1)求證:△AEC是直角三角形.

(2)BC邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某書店老板去圖書批發(fā)市場(chǎng)購(gòu)買某種圖書,第一次用500元購(gòu)書若干本,很快售完由于該書暢銷,第二次購(gòu)書時(shí),每本書的批發(fā)價(jià)已比第一次提高了20%,他用900元所購(gòu)該書的數(shù)量比第一次的數(shù)量多了10本.

1)求第一次購(gòu)書每本多少元?

2)如果這兩次所購(gòu)圖書的售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每本圖書的售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案