【題目】如右圖,正方形ABCD的邊長為2,點E是BC邊上一點,以AB為直徑在正方形內(nèi)作半圓
O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D為△ABC內(nèi)的一點,∠ADB=120°,∠ADC=90°,將△ABD繞點A逆時針旋轉(zhuǎn)60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.
(1)證明:DF是⊙O的切線;
(2)若AC=3AE,FC=6,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】創(chuàng)客聯(lián)盟的隊員想用3D打印完成一幅邊長為6米的正方形作品ABCD,設(shè)計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打印;中心區(qū)是正方形MNPQ,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如下表:
材料 | 甲 | 乙 |
價格(元/米2) | 80 | 50 |
設(shè)矩形的較短邊AH的長為x米,打印材料的總費(fèi)用為y元.
(1)MQ的長為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長不小于2米時,預(yù)備材料的購買資金2800元夠用嗎?請利用函數(shù)的增減性來說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,AB是圓O的一條弦,點C是優(yōu)弧 上一點.
(1)若∠ACB=45°,點P是O上一點(不與A.B重合),則∠APB=___;
(2)如圖②,若點P是弦AB與所圍成的弓形區(qū)域(不含弦AB與)內(nèi)一點.求證:∠APB>∠ACB;
(3)請在圖③中直接用陰影部分表示出在弦AB與所圍成的弓形區(qū)域內(nèi)滿足
的點P所在的范圍;
(4)在(1)的條件下,以PB為邊,向右作等腰直角三角形PBQ,連結(jié)AQ,如圖4,已知AB=2,
①當(dāng)點Q在線段AB的延長線上時,線段AQ的長為____________
②線段AQ的最小值為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,正方形ABCD的邊長為2,點E是BC邊上一點,以AB為直徑在正方形內(nèi)作半圓
O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,△ACD沿AD折疊,使得點C落在斜邊AB上的點E處.
(1)求證:△BDE∽△BAC;
(2)已知AC=6,BC=8,求線段AD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
(1)將其化成的形式_______________;
(2)頂點坐標(biāo)_________對稱軸方程_______________;
(3)用五點法畫出二次函數(shù)的圖象;
(4) 當(dāng)時,寫出的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點A(﹣,0),B(,0),C(0,).D,E分別是線段AC和CB上的點,CD=CE.將△CDE繞點C逆時針旋轉(zhuǎn)一個角度α.
(1)若0°<α<90°,在旋轉(zhuǎn)過程中當(dāng)點A,D,E在同一直線上時,連接AD,BE,如圖2.求證:AD=BE,且AD⊥BE
(2)若0°<α<360°,D,E恰好是線段AC和CB上的中點,在旋轉(zhuǎn)過程中,當(dāng)DE∥AC時,求α的值及點E的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com