【題目】如圖,四邊形ABCD是O內(nèi)接四邊形,AC為直徑,,DEBC,垂足為E.

(1)求證:CD平分ACE;

(2)判斷直線EDO的位置關系,并說明理由;

(3)若CE=1,AC=4,求陰影部分的面積.

【答案】1、證明過程見解析;2、相切,理由見解析;3、

【解析】

試題分析:1、根據(jù)內(nèi)角四邊形得出BADBCD=180°,根據(jù)BCDDCE=180°得到DCE=BAD,根據(jù)弧相等得到BAD=ACD,則DCE=ACD,得到平分;2、連接OD,根據(jù)OC=OD,得出ODC=OCD,根據(jù)DCE=ACD得到DCE=ODC,即ODBE,根據(jù)DEBC得到ODDE,得到切線;3、根據(jù)直徑得出ADC=E=90°,根據(jù)DCE=ACD得到DCE∽△ACD,求出CD的長度,根據(jù)陰影部分的面積等于扇形的面積減去OCD的面積得出答案.

試題解析:1、四邊形ABCD是O內(nèi)接四邊形,

∴∠BADBCD=180°,

∵∠BCDDCE=180°,

∴∠DCE=BAD,

,

∴∠BAD=ACD,

∴∠DCE=ACD,

CD平分ACE.

2、EDO相切.

理由:連接OD,OC=OD,∴∠ODC=OCD,

∵∠DCE=ACD,∴∠DCE=ODC,ODBE,

DEBC,ODDE,EDO相切.

3、AC為直徑,∴∠ADC=90°=E,∵∠DCE=ACD,∴△DCE∽△ACD,

=,即=,CD=2,

OC=OD=CD=2,∴∠ DOC=60°,

S陰影=S扇形-SOCDπ

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABCRtBCD中,∠BAC=∠BDC90°,BC8,ABAC,∠CBD30°,BD4,M,N分別在BD,CD上,∠MAN45°,則△DMN的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同學們學過有理數(shù)減法可以轉(zhuǎn)化為有理數(shù)加法來運算,有理數(shù)除法可以轉(zhuǎn)化為有理數(shù)乘法來運算.其實這種轉(zhuǎn)化的數(shù)學方法,在學習數(shù)學時會經(jīng)常用到,通過轉(zhuǎn)化我們可以把一個復雜問題轉(zhuǎn)化為一個簡單問題來解決.

例如:計算

此題我們按照常規(guī)的運算方法計算比較復雜,但如果采用下面的方法把乘法轉(zhuǎn)化為減法后計算就變得非常簡單.

分析方法:

因為,,,,

所以,將以上4個等式兩邊分別相加即可得到結(jié)果,解法如下:

1=

2)應用上面的方法計算:;

3)類比應用上面的方法探究并計算:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點,BF⊥AECD于點F,垂足為G,連結(jié)CG.下列說法:①AGGE;②AE=BFG運動的路徑長為π④CG的最小值為﹣1.其中正確的說法是 .(把你認為正確的說法的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探索規(guī)律:將連續(xù)的偶數(shù)2,46,8,,排列如下表:

1)十字框中的五個數(shù)的和與中間的數(shù)16有什么關系?

2)若將十字框上下左右移動,可框住另外的五個數(shù),其他五個數(shù)的和能等于2010嗎?如能,寫出這五個數(shù),如不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,AE 是∠BAC 的平分線,∠ABC 的平分線 BM 交 AE 于點 M,點 O在 AB 上,以點O 為圓心,OB 的長為半徑的圓經(jīng)過點 M,交 BC 于點G,交 AB 于點 F.

(1)求證:AE 為⊙O 的切線.

(2)當 BC=8,AC=12 時,求⊙O 的半徑.

(3)在(2)的條件下,求線段 BG 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上兩點開始時所對應的數(shù)分別是6.兩點各自以一定的速度在數(shù)軸上運動,且點的運動速度為2個單位長度.

1)若點兩點初始時線段的中點,則點所表示的數(shù)是_____

2兩點同時出發(fā)相向而行,在原點處相遇,求點的運動速度;

3)若兩點按(2)中的速度同時出發(fā),向數(shù)軸正方向運動,幾秒時兩點相距6個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點EBC邊的中點,動點MCD邊上運動,以EM為折痕將△CEM折疊得到△PEM,聯(lián)接PA,若AB=4,BAD=60°,則PA的最小值是( 。

A. B. 2 C. 2﹣2 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學決定派3名教師帶名學生到某風景區(qū)舉行夏令營活動,甲旅行社收費標準為教師全票,學生半價優(yōu)惠;乙旅行社收費標準為教師和學生全部按全票價的6折優(yōu)惠.已知甲、乙兩旅行社的全票價均為240.

1)用代數(shù)式表示甲、乙兩旅行社的收費各是多少元?

2)當時,如果你是校長,你選擇哪一家旅行社?

查看答案和解析>>

同步練習冊答案