17.計算或化簡:
(1)-22+(-$\frac{1}{2}$)-2-(π-5)0-|-4|;
(2)(-a32+a2•a4-(2a42÷a2

分析 (1)原式利用乘方的意義,零指數(shù)冪、負(fù)整數(shù)指數(shù)冪法則,以及絕對值的代數(shù)意義化簡計算,即可得到結(jié)果;
(2)原式利用冪的乘方與積的乘方運(yùn)算法則計算,合并即可得到結(jié)果.

解答 解:(1)原式=-4+4-1-4=-5;
(2)原式=a6+a6-4a6=-2a6

點(diǎn)評 此題考查了整式的混合運(yùn)算,以及實(shí)數(shù)的運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,船A、B在東西方向的海岸線MN上,均收到已觸礁擱淺的船P的求救信號,已知船P在船A的北偏東62°方向上,在船B的北偏西37°方向上,若AP=30海里.求船B到船P的距離PB(結(jié)果用含非特殊角的三角函數(shù)表示即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.計算:
(1)-20+4-1×(-1)2016×(-$\frac{1}{2}$)-2
(2)(2x3y)2•(-2xy)+(-2x3y)3÷(2x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.已知AB為⊙O的直徑,OC⊥AB,弦DC與OB交于點(diǎn)F,在直線AB上有一點(diǎn)E,連接ED,且有ED=EF.
(Ⅰ)如圖1,求證ED為⊙O的切線;
(Ⅱ)如圖2,直線ED與切線AG相交于G,且OF=1,⊙O的半徑為3,求AG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.解方程組:
(1)$\left\{\begin{array}{l}{2x+y=5}\\{x-y=1}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{2x+3y=4}\\{3x-2y=6}\end{array}\right.$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.方程x2-2x+3=0的根的情況是( 。
A.有兩個相等的實(shí)數(shù)根B.沒有實(shí)數(shù)根
C.有兩個不相等的實(shí)數(shù)根D.只有一個實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

9.如圖,拋物線y=ax2-4ax+c(a、c為常數(shù))與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)D,CD∥x軸.與拋物線交于點(diǎn)C,若點(diǎn)A的坐標(biāo)為(-1,0).則線段OB與線段CD的長度的和為9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x1、x2是方程x2-4x+2=0的兩根,則x1•x2的值是2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.|1-$\sqrt{2}$|+($\sqrt{5}-π$)0+($\frac{3}{7}$)-1+$\root{3}{-\frac{8}{27}}$×$\sqrt{\frac{49}{4}}$=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案