【題目】如圖,正方形的邊長為分別位于軸,軸上,點上,于點,函數(shù)的圖像經(jīng)過點,若,則的值為(

A. B. C. D.

【答案】C

【解析】

根據(jù)正方形的性質(zhì)可得出OCAB,從而得出BPQ∽△OQC,再根據(jù),即可得出點P的坐標,利用待定系數(shù)法求出直線OBCP的解析式,聯(lián)立兩個解析式求出交點坐標后再由反比例函數(shù)圖象上點的坐標特征即可得出結(jié)論.

∵四邊形OABC為正方形,

OCAB,

BPQOQC

∵正方形OABC的邊長為6,

∴點C(0,6),B(6,6),P(6,3),

利用待定系數(shù)法可求出:

直線OB的解析式為y=x,直線CP的解析式為

聯(lián)立OBCP的解析式得:

解得:

Q(4,4).

∵函數(shù)的圖象經(jīng)過點Q,

k=4×4=16.

故選:C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB經(jīng)過⊙O上的點C,且OA=OB,CA=CB.

(1)求證:直線AB是⊙O的切線;

(2)若∠A=30°,AC=6,求⊙O的周長;

(3)(2)的條件下,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BD是菱形ABCD的對角線.

1)請用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點E,交AD于點F;(不要求寫作法,保留作圖痕跡)

2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線MN是線段BC的垂直平分線,垂足為O,P為射線OM上的一點,連接BP,PC.將線段PB繞點P逆時針旋轉(zhuǎn),得到線段PQPQPC不重合),旋轉(zhuǎn)角為α0°<α180°)直線CQMN與點D

1)如圖1,當α30°,且點P與點O重合時,∠CDM的度數(shù)是   ;

2)如圖2,且點P與點O不重合.

①當α120°時,求∠CDM的度數(shù);

②用含α的代數(shù)式表示∠CDM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】E-learning即為在線學習,是一種新型的學習方式.某網(wǎng)站提供了A、B兩種在線學習的收費方式.A種:在線學習10小時(包括10小時)以內(nèi),收取費用5元,超過10小時時,在收取5元的基礎(chǔ)上,超過部分每小時收費0.6元(不足1小時按1小時計);B種:每月的收費金額(元)與在線學習時間是(時)之間的函數(shù)關(guān)系如圖所示.

1)按照B種方式收費,當時,求關(guān)于的函數(shù)關(guān)系式.

2)如果小明三月份在這個網(wǎng)站在線學習,他按照A種方式支付了20元,那么在線學習的時間最多是多少小時?如果該月他按照B 種方式付費,那么他需要多付多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鮮豐水果店計劃用/盒的進價購進一款水果禮盒以備銷售.

據(jù)調(diào)查,當該種水果禮盒的售價為/盒時,月銷量為盒,每盒售價每增長元,月銷量就相應(yīng)減少盒,若使水果禮盒的月銷量不低于盒,每盒售價應(yīng)不高于多少元?

在實際銷售時,由于天氣和運輸?shù)脑,每盒水果禮盒的進價提高了,而每盒水果禮盒的售價比(1)中最高售價減少了,月銷量比(1)中最低月銷量盒增加了,結(jié)果該月水果店銷售該水果禮盒的利潤達到了元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點AB30),與y軸交于點C0,3).

1)求拋物線的解析式;

2)若點M是拋物線上在x軸下方的動點,過MMNy軸交直線BC于點N,求線段MN的最大值;

3E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點,沿EC對折矩形ABCD,使B點落在點P處,折痕為EC,聯(lián)結(jié)AP并延長APCDF點,

1)求證:四邊形AECF為平行四邊形;

2)如果PA=PC,聯(lián)結(jié)BP,求證:△APBEPC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AFBC于點E,延長BC到點D,連接OA,AD,使得∠FAC=AOD,∠D=BAF

(1)求證:AD是⊙O的切線;

(2)若⊙O的半徑為5,CE=2,求EF的長.

查看答案和解析>>

同步練習冊答案