【題目】如圖,若∠1=100°,∠4=80°,則__________,理由是________________;若∠3=70°,則∠2=_______時,也可推出AB∥CD.
【答案】 AB∥CD 同旁內(nèi)角互補,兩直線平行 110°
【解析】
因為∠1和∠4是直線AB和直線CD被第三條直線所截的同旁內(nèi)角,且∠1+∠4=180°,根據(jù)同旁內(nèi)角互補,兩直線平行可得:AB//CD,又因為∠2和∠3是直線AB和直線CD被第三條直線所截的同旁內(nèi)角,因為∠3=70°,根據(jù)兩直線平行,同旁內(nèi)角互補可得: ∠2=110°
因為∠1=100°,∠4=80°,
所以∠1+∠4=180°,
所以AB//CD(理由:同旁內(nèi)角互補,兩直線平行)
又因為∠2和∠3是直線AB和直線CD被第三條直線所截的同旁內(nèi)角,且AB//CD,
所以∠2+∠3=180°,
因為∠3=70°,
所以∠2=110°.
故答案為: AB//CD, 同旁內(nèi)角互補,兩直線平行, 110°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了強化司機的交通安全意識,我市利用交通安全宣傳月對司機進行了交通安全知識問卷調(diào)查.關(guān)于酒駕設(shè)計了如下調(diào)查問卷:
克服酒駕﹣﹣你認為哪種方式最好?(單選) |
A加大宣傳力度,增強司機的守法意識. B在汽車上張貼溫馨提示:“請勿酒駕”. C司機上崗前簽“拒接酒駕”保證書. D加大檢查力度,嚴(yán)厲打擊酒駕. E查出酒駕追究一同就餐人的連帶責(zé)任. |
隨機抽取部分問卷,整理并制作了如下統(tǒng)計圖:
根據(jù)上述信息,解答下列問題:
(1)本次調(diào)查的樣本容量是多少?
(2)補全條形圖,并計算B選項所對應(yīng)扇形圓心角的度數(shù);
(3)若我市有3000名司機參與本次活動,則支持D選項的司機大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=2x+4
(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;
2)求圖象與x軸的交點A的坐標(biāo),與y軸交點B的坐標(biāo);
(3)在(2)的條件下,求出△AOB的面積;
(4)利用圖象直接寫出:當(dāng)y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+bx+c(a≠0)經(jīng)過原點,頂點為A(h,k)(h≠0).
(1)當(dāng)h=1,k=2時,求拋物線的解析式;
(2)若拋物線y=tx2(t≠0)也經(jīng)過A點,求a與t之間的關(guān)系式;
(3)當(dāng)點A在拋物線y=x2﹣x上,且﹣2≤h<1時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“保護好環(huán)境,拒絕冒黑煙”.某市公交公司將淘汰某一條線路上“冒黑煙”較嚴(yán)重的公交車,計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預(yù)計在該線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,AC=BC=a,以斜邊AB上的點O為圓心的圓分別與AC,BC相切于點E,F(xiàn),與AB分別交于點G,H,且EH的延長線和CB的延長線交于點D,則CD的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:
因為∠1=65°,∠2=65°,
所以∠1=∠2.
所以______________∥ ( ).
因為AB與DE相交,
所以∠1=∠4( ).
所以∠4=65°.
又因為∠3=115°,
所以∠3+∠4=180°.
所以 ∥ ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.請?zhí)剿鰾M,DN與AB的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠B=∠C,AD∥BC.
(1)證明:AD平分∠CAE;
(2)如果∠BAC=120°,求∠B的度數(shù).(不允許使用三角形內(nèi)角和為180°)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com