【題目】如圖,ABC內(nèi)接于⊙O,過點A作⊙O的切線,交OC的延長線于點DD=30°

1)求∠B的度數(shù);

2)若ODAB,BC=5,求AD的長.

【答案】(1)30°;(2)

【解析】試題分析:1)連接OA,由AD的切線,利用切線的性質(zhì)得到OAAD垂直,得到為直角三角形,利用直角三角形的兩銳角互余求出的度數(shù),再利用同弧所對的圓心角等于所對圓周角的2倍,即可求出的度數(shù);
2)由ODAB,,利用垂徑定理得到,利用等弧對等弦得到AC=BC=5,由,利用30°所對的直角邊等于斜邊的一半得到OAOD的一半,而OC=OA,可得出COD的中點,求出OD的長,再利用勾股定理即可求出AD的長.

試題解析(1)連接OA,

AD的切線,

∵∠AOD與∠B所對的弧都為.

∴∠AOD=2B,

(2)ODAB

,

AC=BC=5,

COD的中點,

OD=2AC=10

則根據(jù)勾股定理得:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠B30°,邊AB的垂直平分線分別交ABBC于點D,E,且AE平分∠BAC

1)求∠C的度數(shù);

2)若CE1,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:一般地,個相同的因數(shù)相乘 ,記為.如,此時,叫做以為底的對數(shù),記為(即).一般地,若,(,),則叫做以為底的對數(shù),記為(即).如,則叫做以為底的對數(shù),記為(即).

1)計算以下各對數(shù)的值:__________,__________,__________.

2)觀察(1)中三數(shù)、,之間滿足怎樣的關系式,、之間又滿足怎樣的關系式;

3)由(2)的結(jié)果,你能歸納出一個一般性的結(jié)論嗎?__________.(,,

4)根據(jù)冪的運算法則:以及對數(shù)的含義證明上述結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線與⊙OAB是⊙O的直徑,AD于點D

1如圖①,當直線與⊙O相切于點C時,若∠DAC=30°,求∠BAC的大;

2如圖②,當直線與⊙O相交于點EF時,若∠DAE=18°,求∠BAF的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,D、E分別是AC、AB上的點,BDCE交于點O.給出下列三個條件:

①∠EBO=DCO;②∠BEO=CDO;BE=CD.

(1)上述三個條件中,哪兩個條件   可判定ABC是等腰三角形(用序號寫出所有情形);

(2)選擇第(1)小題中的一種情形,證明ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+ca≠0)與x軸交于不同的兩個點Ax10)和點Bx2,0)與y軸的正半軸交于點C,如果x1x2是方程x2﹣2x﹣3=0的兩個根(x1x2),且圖象經(jīng)過點(23

1)求拋物線的解析式并畫出圖象

2x在什么范圍內(nèi)函數(shù)值y大于3且隨x的增大而增大.

3)設(1)中的拋物線頂點D,在y軸上是否存在點P,使得DP+BP的和最小?若存在,求出這個最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蘇州太湖養(yǎng)殖場計劃養(yǎng)殖蟹和貝類產(chǎn)品,這兩個品種的種苗的總投放量只有50噸,根據(jù)經(jīng)驗測算,這兩個品種的種苗每投放一噸的先期投資,養(yǎng)殖期間的投資以及產(chǎn)值如下表(單位:萬元/噸)

品種

先期投資

養(yǎng)殖期間投資

產(chǎn)值

貝類產(chǎn)品

0.9

0.3

0.33

蟹產(chǎn)品

0.4

1

2

養(yǎng)殖場受經(jīng)濟條件的影響,先期投資不超過36萬元,養(yǎng)殖期間的投資不超過29萬元,設貝類的種苗投放量為x噸,

1)求x的取值范圍;

2)設這兩個品種產(chǎn)出后的總產(chǎn)值為y(萬元),試寫出yx之間的函數(shù)關系式,并求出當x等于多少時,y有最大值?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】P是三角形 內(nèi)一點,射線PD//AC ,射線PB//AB .

1)當點D,E分別在AB,BC 上時,

①補全圖1

②猜想 的數(shù)量關系,并證明;,

2)當點都在線段上時,請先畫出圖形,想一想你在(1)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+3x+1﹣m=0有兩個不相等的實數(shù)根.

1)求m的取值范圍;

2)若m為負整數(shù),求此時方程的根.

查看答案和解析>>

同步練習冊答案