【題目】矩形ABCD中,AB=20,BC=6,E為AB邊的中點,PCD邊上的點,且AEP是腰長為10的等腰三角形,則線段BP的長為______________

【答案】6;2,

【解析】分析:首先根據題意畫出圖形,共分3種情況,畫出圖形后根據勾股定理即可算出的長.

詳解:分三種情況:

①如圖1,當AE=EP=10時,

PPMAB,

∵四邊形ABCD是矩形,

∴∠B=C=,

∴四邊形BCPM是矩形,

PM=BC=6,

PE=10,

EAB中點,

BE=10,

BM=PC=108=2,

②如圖2,AE=AP=10,

③如圖3,當AE=EP=10時,

PPFAB,

∵四邊形ABCD是矩形,

∴∠D=DAB=,

∴四邊形BCPF是矩形,

PF=AD=6,

PE=10,

EAB中點,

AE=10,

DP=AF=108=2,

PC=202=18,

綜上可知BP的長為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的方格紙中,每個小正方形的邊長為1,每個小正方形的頂點叫格點,請利用格點畫圖.

1)在圖①中過點的平行線,并標出經過的格點M;

2)在圖①中過點的垂線,交于點,并標出經過的格點N;

3)三角形的面積是

4)網格中的“平移”是指只沿方格的格線(即上下或左右)運動,將圖②中的任一條線段平移1格稱為“1步”,要通過平移,使圖②中的3條線段首尾相接組成一個三角形,最少需要移動 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EF是平行四邊形ABCD對角線AC上兩點,AE=CF

證明(1△ABE≌△CDF;

2BE∥DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用火柴棒按如圖所示方式搭圖形,按照這種方式搭下去,搭第2020個圖形需火柴棒的根數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇,李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家,設他出地鐵的站點與文化宮距離為x(單位:千米),乘坐地鐵的時間 (單位:分鐘)是關于x的一次函數(shù),其關系如下表:

地鐵站

A

B

C

D

E

x(千米)

8

9

10

11.5

13

(分鐘)

18

20

22

25

28

(1)求關于x的函數(shù)表達式;

(2)若小李騎單車的時間單位:分鐘與x滿足關系式,且此函數(shù)圖象的對稱軸為直線x=11,當小李選擇在C站出地鐵時,還需騎單車18分鐘才能到家,試求與x的函數(shù)關系式;

(3)試求李華應選擇在哪一站出地鐵,才能使他從文化宮回到家所需的總時間最短?并求出最短時間(其他環(huán)節(jié)時間忽略不計)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中, DE是△ABC的中位線,DEBC,MDE的中點,CM的延長線交AB于點N,則SDMNS△CEM等于( )

A.12B.13C.14D.15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A.B兩地之間有一條筆直的公路,甲車從A地出發(fā)勻速向B地行駛,中途因有事停留了1小時后按原速駛向B地;在甲車出發(fā)的同時乙車從B地出發(fā)勻速向A地行駛,到達A地后,立即按原路原速返回到B地。兩車在行駛的過程中,甲乙兩車距A地的路程y(千米)與行駛時間x(小時)之間的函數(shù)關系式如圖所示,請結合圖像回答下列問題:

(1)在圖像的_____中填入正確的數(shù)值

(2)求甲車在中途因事停留后駛向B地過程中,yx之間的函數(shù)關系式

(3)直接寫出:乙車從A地出發(fā)多少小時后,甲.乙兩車分別到甲車中途停留地的距離相等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藍莓加工廠每天生產AB兩種品牌的藍莓酒共600瓶,每天投入成本26400元,其中A,B兩種品牌的藍莓酒每瓶的成本和利潤如下表:

1)該廠每天生產A、B兩種品牌的藍莓酒各多少瓶?

2)該廠每天獲得利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(+×(﹣24);

275×(﹣224÷(﹣23+4×(﹣2);

3)化簡:5x+3y)﹣24x+3y+32x3y).

查看答案和解析>>

同步練習冊答案