【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請將表格補充完整;

(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置;

(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.

【答案】(1)東,西,東,西;(2)向東(7﹣x)km;(3)12.

【解析】

(1)根據(jù)數(shù)的符號說明即可;

(2)把路程相加,求出結果,看結果的符號即可判斷出答案;

(3)求出每個數(shù)的絕對值,相加求出總路程,再解方程求解即可.

解:(1)填表如下:

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

西

西

故答案為:東,西,東,西;

(2)x+(﹣x)+(x﹣3)+2(5﹣x)=7﹣x,

x>5x<14,

7﹣x>0,

∴經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置是向東(7﹣x)km.

(3)|x|+|﹣x|+|x﹣3|+|2(5﹣x)|=x+x+x﹣3﹣2(5﹣x)=x﹣13,

依題意有x﹣13=41,

解得x=12.

答:第一次行駛的路程x的值是12.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB∥CD,∠B=40°,CN是∠BCE的平分線,CM⊥CN,求∠BCM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠一周計劃每日生產(chǎn)某產(chǎn)品100噸,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標準,增加的噸數(shù)記為正數(shù),減少的噸數(shù)記為負數(shù))

星期

增減/

﹣1

+3

﹣2

+4

+7

﹣5

﹣10

(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少噸?

(2)本周總生產(chǎn)量是多少噸?比原計劃增加了還是減少了?增減數(shù)為多少噸?

(3)若本周總生產(chǎn)的產(chǎn)品全部由35輛貨車一次性裝載運輸離開工廠,則平均每輛貨車大約需裝載多少噸?(結果精確到0.01噸)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A的坐標是(0,3),點B在x軸上,將△AOB繞點A逆時針旋轉(zhuǎn)90°得到△AEF,點O、B的對應點分別是點E、F.

(1)若點B的坐標是(﹣4,0),請在圖中畫出△AEF,并寫出點E、F的坐標.
(2)當點F落在x軸的上方時,試寫出一個符合條件的點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在李村河治理工程實驗過程中,某工程隊接受一項開挖水渠的工程,所需天數(shù)y(天)與每天完成的工程量x(m/天)的函數(shù)關系圖象如圖所示,是雙曲線的一部分.
(1)請根據(jù)題意,求y與x之間的函數(shù)表達式;
(2)若該工程隊有2臺挖掘機,每臺挖掘機每天能夠開挖水渠15米,問該工程隊需用多少天才能完成此項任務?
(3)如果為了防汛工作的緊急需要,必須在一個月內(nèi)(按30天計算)完成任務,那么每天至少要完成多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下面三行數(shù):

取每一行的第n個數(shù),依次記為x、y、z.如上圖中,當n=2時,x=﹣4,y=﹣3,z=2.

(1)當n=7時,請直接寫出x、y、z的值,并求這三個數(shù)中最大的數(shù)與最小的數(shù)的差;

(2)已知n為偶數(shù),且x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;

(3)若m=x+y+z,則x、y、z這三個數(shù)中最大的數(shù)與最小的數(shù)的差為   (用含m的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲同學手中藏有三張分別標有數(shù)字 ,1的卡片,乙同學手中藏有三張分別標有1,3,2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請你用樹形圖或列表法列出所有可能的結果.
(2)現(xiàn)制定這樣一個游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個不相等的實數(shù)根,則稱甲獲勝;否則稱乙獲勝.請問這樣的游戲規(guī)則公平嗎?請你用概率知識解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2的圖象如圖所示,則關于x的一元二次方程x2+x+a﹣1=0的根的存在情況是(
A.沒有實數(shù)根
B.有兩個相等的實數(shù)根
C.有兩個不相等的實數(shù)根
D.無法確定

查看答案和解析>>

同步練習冊答案