【題目】如圖,在平面直角坐標(biāo)系中,,直線與軸交于點(diǎn),直線與軸及直線分別交于點(diǎn).點(diǎn)關(guān)于軸對(duì)稱,連接.
(1)求點(diǎn)的坐標(biāo)及直線的表達(dá)式;
(2)設(shè)面積的和,求的值;
(3)在求(2)中時(shí),嘉琪有個(gè)想法:“將沿軸翻折到的位置,與四邊形拼接后可看成,這樣求便轉(zhuǎn)化為直接求的面積不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn),請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.
【答案】(1)C(-13,0),E(-5,-3),;(2)32;(3)見(jiàn)解析.
【解析】
(1)利用坐標(biāo)軸上點(diǎn)的特點(diǎn)確定出點(diǎn)C的坐標(biāo),再利用直線的交點(diǎn)坐標(biāo)的確定方法求出點(diǎn)E坐標(biāo),進(jìn)而得到點(diǎn)B坐標(biāo),最后用待定系數(shù)法求出直線AB解析式;
(2)直接利用直角三角形的面積計(jì)算方法和直角梯形的面積的計(jì)算即可得出結(jié)論,
(3)先求出直線AB與x軸的交點(diǎn)坐標(biāo),判斷出點(diǎn)C不在直線AB上,即可.
(1)在直線中,令y=0,則有0=,
∴x=﹣13,
∴C(﹣13,0),
令x=﹣5,代入,解得y=﹣3,
∴E(﹣5,﹣3),
∵點(diǎn)B,E關(guān)于x軸對(duì)稱,
∴B(﹣5,3),
∵A(0,5),
∴設(shè)直線AB的解析式為y=kx+5,
∴﹣5k+5=3,
∴k=,
∴直線AB的解析式為;
(2)由(1)知E(﹣5,﹣3),
∴DE=3,
∵C(﹣13,0),
∴CD=﹣5﹣(﹣13)=8,
∴S△CDE=CD×DE=12,
由題意知,OA=5,OD=5,BD=3,
∴S四邊形ABDO=(BD+OA)×OD=20,
∴S=S△CDE+S四邊形ABDO=12+20=32;
(3)由(2)知,S=32,
在△AOC中,OA=5,OC=13,
∴S△AOC=OA×OC==32.5,
∴S≠S△AOC,
理由:由(1)知,直線AB的解析式為,令y=0,則0=,
∴x=﹣≠﹣13,
∴點(diǎn)C不在直線AB上,
即:點(diǎn)A,B,C不在同一條直線上,
∴S△AOC≠S.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△DBE都是等腰直角三角形,點(diǎn)D在AC上,其中∠ABC=∠DBE=90°.
(1)求∠DCE的度數(shù);
(2)當(dāng)AB=5,AD:DC=2:3時(shí),求DE的大;
(3)當(dāng)點(diǎn)D在線段AC上運(yùn)動(dòng)時(shí)(D不與A重合),請(qǐng)寫(xiě)出一個(gè)反映DA2,DC2,DB2之間關(guān)系的等式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD紙片中,已知∠A=160°,∠B=30°,∠C=60°,四邊形ABCD紙片分別沿EF,GH,OP,MN折疊,使A與A′、B與B′、C與C′、D與D′重合,則∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( )
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=10,AD=4,點(diǎn)P在邊DC上,且△PAB是直角三角形,請(qǐng)?jiān)趫D中標(biāo)出符合題意的點(diǎn)P,并直接寫(xiě)出PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象l2與l1交于點(diǎn)C(m,4).
(1)求m的值及l(fā)2的解析式;
(2)求S△AOC﹣S△BOC的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,點(diǎn)D , E , F分別是邊AB , AC , BC上的點(diǎn),DE∥BC , EF∥AB , 且AD:DB=4:7,那么CF:CB等于( 。
A.7:11
B.4:8
C.4:7
D.3:7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,AB=AC=8cm,BC=6cm,D為AB中點(diǎn),點(diǎn)P在AC上從C向A運(yùn)動(dòng),運(yùn)動(dòng)速度為2(cm/s);同時(shí),點(diǎn)Q在BC上從B向C運(yùn)動(dòng),設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x(cm/s).且設(shè)P,Q的運(yùn)動(dòng)時(shí)間均為t秒,若其中一點(diǎn)先到達(dá)終點(diǎn),則另一個(gè)點(diǎn)也將停止運(yùn)動(dòng).
(1)如圖2,當(dāng)PD∥BC時(shí),請(qǐng)解決下列問(wèn)題:
①t= ;
②△ADP的形狀為 (按“邊”分類);
③若此時(shí)恰好有△BDQ≌△CPQ,請(qǐng)求出點(diǎn)Q運(yùn)動(dòng)速度x的值;
(2)當(dāng)PD與BC不平行時(shí),也有△BDQ與△CPQ全等:
①請(qǐng)求出相應(yīng)的t與x的值;
②若設(shè)∠A=α°,請(qǐng)直接寫(xiě)出相應(yīng)的∠DQP的度數(shù)(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長(zhǎng)度不限),用40米長(zhǎng)的籬笆圍成一個(gè)長(zhǎng)方形的倉(cāng)庫(kù).
(1)求長(zhǎng)方形的面積是150平方米,求出長(zhǎng)方形兩鄰邊的長(zhǎng);
(2)能否圍成面積220平方米的長(zhǎng)方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com