【題目】探究題:觀察下列各式:①;②;③.

1)猜想的變形結果并驗證;

2)針對上述各式反映的規(guī)律,給出用為任意自然數(shù),且)表示的等式,并進行證明.

【答案】1)猜想,驗證見解析;(2,證明見解析

【解析】

1)注意觀察左邊的被開方數(shù)是一個帶分數(shù),其分數(shù)部分的分子是1,分母比其整數(shù)部分大2.右邊的結果根號外的比左邊的整數(shù)部分大1,根號內的是左邊的分數(shù)部分,據(jù)此寫出猜想,然后利用二次根式的性質進行驗證;
2)注意觀察左邊的被開方數(shù)是一個帶分數(shù),其分數(shù)部分的分子是1,分母比其整數(shù)部分大2.右邊的結果根號外的比左邊的整數(shù)部分大1,根號內的是左邊的分數(shù)部分,據(jù)此寫出規(guī)律,然后利用二次根式的性質進行驗證.

1)猜想,

驗證:左邊右邊,故等式成立;

2)根據(jù)規(guī)律可得:

證明:左邊右邊,

故等式成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市南湖生態(tài)城某樓盤準備以每平方米元的均價對外銷售,由于國務院有關房地產的新政策出臺后,購房者持幣觀望,房地產開發(fā)商為了加快資金周轉,對價格經過兩次下調后,決定以每平方米元的均價開盤銷售.

求平均每次下調的百分率;

王先生準備以開盤價均價購買一套平方米的住房,開發(fā)商給予以下兩種優(yōu)惠方案:

折銷售;

不打折,一次性送裝修費每平方米元,試問那種方案更優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知關于x的一元二次方程x2+2x+=0有兩個不相等的實數(shù)根,k為正整數(shù).

(1)求k的值;

(2)當此方程有一根為零時,直線y=x+2與關于x的二次函數(shù)y=x2+2x+的圖象交于A、B兩點,若M是線段AB上的一個動點,過點MMNx軸,交二次函數(shù)的圖象于點N,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線與雙曲線的一個交點坐標為.

1)畫出的圖像;

2)求出點的坐標;

3)求反比例函數(shù)關系式;

4)求這兩個函數(shù)圖像的另一個交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校科技小組進行野外考察,途中遇到一片濕地,為了安全、迅速通過這片濕地,他們沿著前進路線鋪了若干塊木塊,構筑成一條臨時近道,木板對地面的壓強是木板面積的反比例函數(shù),其圖像如下圖所示:

1)請直接寫出這一函數(shù)表達式和自變量取值范圍;

2)當木板面積為時,壓強是多少?

3)如果要求壓強不超過,木板的面積至少要多大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線,將△DCB繞著點D順時針旋轉45°得到△DGH,HGAB于點E,連接DEAC于點F,連接FG.則下列結論:

①四邊形AEGF是菱形;②△HED的面積是1﹣;③∠AFG=112.5°;BC+FG=.其中正確的結論是( 。

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小馬、小虎兩人共同計算一道題:(x+a)(2x+b).由于小馬抄錯了a的符號,得到的結果是2x27x+3,小虎漏抄了第二個多項式中x的系數(shù)得到的結果是x2+2x3

1)求a,b的值;

2)細心的你請計算這道題的正確結果;

3)當x=﹣1時,計算(2)中的代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(﹣2,0),等邊△AOC經過平移或軸對稱或旋轉都可以得到△OBD.

(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是   個單位長度;△AOC△BOD關于直線對稱,則對稱軸是   ;△AOC繞原點O順時針旋轉得到△DOB,則旋轉角度可以是   度.

(2)連接AD,交OC于點E,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC2,∠B=∠C40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE40°,DE交線段ACE

1)當∠BDA115°時,∠EDC   °,∠DEC   °;點DBC運動時,∠BDA逐漸變   (填“大”或“小”);

2)當DC等于多少時,△ABD≌△DCE,請說明理由;

3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.

查看答案和解析>>

同步練習冊答案