【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為的拋物線()經(jīng)過(guò)點(diǎn)軸上的點(diǎn),

1)求該拋物線的表達(dá)式;

2)聯(lián)結(jié),求

3)將拋物線向上平移得到拋物線,拋物線軸分別交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),如果相似,求所有符合條件的拋物線的表達(dá)式.

【答案】(1);(2);(3)拋物線為:

【解析】

1)根據(jù)題意,可以寫(xiě)出點(diǎn)B和點(diǎn)A的坐標(biāo),從而可以得到該拋物線的表達(dá)式;

2)根據(jù)(1)中的函數(shù)解析式,可以求得點(diǎn)M的坐標(biāo),從而可以求得直線AM的函數(shù)解析式,從而可以求得SAOM;

3)根據(jù)題意,利用分類(lèi)討論的方法和三角形相似的知識(shí)可以求得點(diǎn)F的坐標(biāo),從而可以求得拋物線C2的表達(dá)式.

解:(1)過(guò)軸,垂足為,

,

,

,

中,

拋物線經(jīng)過(guò)點(diǎn),

可得:

解得:

這條拋物線的表達(dá)式為;

2)過(guò)軸,垂足為,

=

頂點(diǎn),得

設(shè)直線AMy=kx+b,

,代入得,解得

∴直線

y=0,解得x=

直線軸的交點(diǎn)

3、

中,

.由拋物線的軸對(duì)稱(chēng)性得:,

,

當(dāng)相似時(shí),有:

,

設(shè)向上平移后的拋物線為:,

當(dāng)時(shí),,

拋物線為:

當(dāng)時(shí),,

拋物線為:

綜上:拋物線為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在四邊形ABCD中,ABCD,對(duì)角線AC、BD交于點(diǎn)E,點(diǎn)F在邊AB上,連接CF交線段BE于點(diǎn)G,CG2=GEGD.

(1)求證:ACF=ABD;

(2)連接EF,求證:EFCG=EGCB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,正方形中,分別是、邊長(zhǎng)的點(diǎn),交于點(diǎn).求證:;

2)如圖2,矩形中,,、分別是、邊上的點(diǎn),交于點(diǎn).求證:;

3)如圖3,若(2)種的四邊形是平行四邊形,且,則是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是⊙O的直徑,以A為圓心,弦AB為半徑畫(huà)弧交⊙O于點(diǎn)C,連結(jié)BCAD于點(diǎn)E,若DE3,BC8,則⊙O的半徑長(zhǎng)為(

A.B.5C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某興趣小組用無(wú)人機(jī)進(jìn)行航拍測(cè)高,無(wú)人機(jī)從1號(hào)樓和2號(hào)樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測(cè)得1號(hào)樓頂部E的俯角為60°,測(cè)得2號(hào)樓頂部F的俯角為45°.已知1號(hào)樓的高度為20米,則2號(hào)樓的高度為_____(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明對(duì)自己所在班級(jí)的50名學(xué)生平均每周參加課外活動(dòng)的時(shí)間進(jìn)行了調(diào)查,由調(diào)查結(jié)果繪制了頻數(shù)分布直方圖,根據(jù)圖中信息回答下列問(wèn)題:

1)求m的值;

2)從參加課外活動(dòng)時(shí)間在610小時(shí)的5名學(xué)生中隨機(jī)選取2人,請(qǐng)你用列表或畫(huà)樹(shù)狀圖的方法,求其中至少有1人課外活動(dòng)時(shí)間在810小時(shí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知EF、GH是四邊形ABCD四邊的中點(diǎn),則四邊形EFGH的形狀為_____;如四邊形ABCD的對(duì)角線AC BD的和為40,則四邊形EFGH的周長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1l2Ol1l2分別相切于點(diǎn)A和點(diǎn)B.點(diǎn)M和點(diǎn)N分別是l1l2上的動(dòng)點(diǎn),MN沿l1l2平移.⊙O的半徑為1,1=60°.有下列結(jié)論:①MN=②若MN與⊙O相切,則AM=;③若∠MON=90°,則MN與⊙O相切;④l1l2的距離為2,其中正確的有( 。

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣5y軸于點(diǎn)A,交x軸于點(diǎn)B(﹣5,0)和點(diǎn)C(1,0),過(guò)點(diǎn)AADx軸交拋物線于點(diǎn)D.

(1)求此拋物線的表達(dá)式;

(2)點(diǎn)E是拋物線上一點(diǎn),且點(diǎn)E關(guān)于x軸的對(duì)稱(chēng)點(diǎn)在直線AD上,求△EAD的面積;

(3)若點(diǎn)P是直線AB下方的拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到某一位置時(shí),△ABP的面積最大,求出此時(shí)點(diǎn)P的坐標(biāo)和△ABP的最大面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案