【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點(diǎn)為D,AB經(jīng)過(guò)圓心O并與圓相交于點(diǎn)E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

【答案】
(1)

證明:連接OD,

∵BC是⊙O的切線,

∴OD⊥BC,又∠C=90°,

∴OD∥AC,

∴∠ODA=∠CAD,

∵OA=OD,

∴∠ODA=∠OAD,

∴∠OAD=∠CAD,即AD平分∠BAC


(2)

解:連接CE,

∵AE是⊙O的直徑,

∴∠ADE=90°,

∵∠OAD=∠CAD,tan∠DAC= ,

∴tan∠EAD= ,

∵tan∠DAC= ,AC=8,

∴CD=6,

由勾股定理得,AD= =10,

= ,

解得,DE= ,

∴AE= = ,

∴⊙O的半徑為


【解析】(1)連接OD,根據(jù)切線的性質(zhì)得到OD⊥BC,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)證明;(2)連接CE,根據(jù)正切的定義和勾股定理求出AD,根據(jù)正切的定義計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年五一節(jié),小明外出爬山他從山腳爬到山頂?shù)倪^(guò)程中,中途休息了一段時(shí)間設(shè)他從山腳出發(fā)后所用的時(shí)間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示,下列說(shuō)法錯(cuò)誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過(guò)程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在邊AB,BC上,AE=BF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角.當(dāng)小球P第一次碰到點(diǎn)E時(shí),小球P與正方形的邊碰撞的次數(shù)為 , 小球P所經(jīng)過(guò)的路程為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】了解學(xué)生零花錢(qián)的使用情況,校團(tuán)委隨機(jī)調(diào)查了本校部分學(xué)生每人一周的零花錢(qián)數(shù)額,并繪制了如圖甲、乙所示的兩個(gè)統(tǒng)計(jì)圖(部分未完成).請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:

(1)校團(tuán)委隨機(jī)調(diào)查了多少學(xué)生?請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;
(2)表示“50元”的扇形的圓心角是多少度?被調(diào)查的學(xué)生每人一周零花錢(qián)數(shù)的中位數(shù)是多少元?
(3)四川雅安地震后,全校1000名學(xué)生每人自發(fā)地捐出一周零花錢(qián)的一半,以支援災(zāi)區(qū)建設(shè).請(qǐng)估算全校學(xué)生共捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某鎮(zhèn)水庫(kù)的可用水量為12000萬(wàn)立方米,假設(shè)年降水量不變,能維持該鎮(zhèn)16萬(wàn)人20年的用水量.實(shí)施城市化建設(shè),新遷入4萬(wàn)人后,水庫(kù)只夠維持居民15年的用水量.
(1)問(wèn):年降水量為多少萬(wàn)立方米?每人年平均用水量多少立方米?
(2)政府號(hào)召節(jié)約用水,希望將水庫(kù)的保用年限提高到25年,則該鎮(zhèn)居民人均每年需節(jié)約多少立方米才能實(shí)現(xiàn)目標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:一條直角邊和斜邊上的高對(duì)應(yīng)相等的兩個(gè)直角三角形全等有兩條邊相等的兩個(gè)直角三角形全等若兩個(gè)直角三角形面積相等,則它們?nèi)?/span>兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等。其中錯(cuò)誤的個(gè)數(shù)是:(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將△ABC繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)θ度,并使各邊長(zhǎng)變?yōu)樵瓉?lái)的n倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].

(1)如圖①,對(duì)△ABC作變換[60°, ]得△AB′C′,則SAB′C′:SABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對(duì)△ABC 作變換[θ,n]得△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對(duì)△ABC作變換[θ,n]得△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=10cm,BC=6cm,AC=8cm,BD是∠ABC的角平分線。

(1)求△ABC的面積;

(2)求△ABC的角平分線BD的長(zhǎng);

(3)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn),從點(diǎn)B以每秒2cm的速度向A運(yùn)動(dòng),幾秒種后△EAD是直角三角形?此小題可直接寫(xiě)出答案

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等腰直角三角形ABC中,∠ACB=90°,BC=1,在BC的延長(zhǎng)線上任取一點(diǎn)P,過(guò)點(diǎn)P作PD⊥BC,使得PD=2PC,則當(dāng)點(diǎn)P在BC延長(zhǎng)線上向左移動(dòng)時(shí),△ABD的面積大小變化情況是( )

A.一直變大
B.一直變小
C.先變小再變大
D.先變大再變小

查看答案和解析>>

同步練習(xí)冊(cè)答案