【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線,有以下結(jié)論:①;;;.其中正確的結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】

由拋物線開口方向得到a<0,由拋物線的對稱軸方程得到為b=2a<0,由拋物線與y軸的交點(diǎn)位置得到c>0,則可對①進(jìn)行判斷;根據(jù)拋物線與x軸交點(diǎn)個(gè)數(shù)得到△=b2-4ac>0,則可對②進(jìn)行判斷;利用b=2a可對③進(jìn)行判斷;利用x=-1時(shí)函數(shù)值為正數(shù)可對④進(jìn)行判斷.

解:∵拋物線開口向下,

∴a<0,

∵拋物線的對稱軸為直線x=-=-1,

∴b=2a<0,

∵拋物線與y軸的交點(diǎn)在x軸上方,

∴c>0,

∴abc>0,所以①正確;

∵拋物線與x軸有2個(gè)交點(diǎn),

∴△=b2-4ac>0,所以②正確;

∵b=2a,

∴2a-b=0,所以③錯(cuò)誤;

∵拋物線開口向下,x=-1是對稱軸,所以x=-1對應(yīng)的y值是最大值,

∴a-b+c>2,所以④正確.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一副直角三角板如圖放置,點(diǎn)C在FD的延長線上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,試求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),AB=7cmACAB,BDAB 垂足分別為 AB,AC=5cm.點(diǎn)P 在線段 AB 上以 2cm/s 的速度由點(diǎn) A 向點(diǎn)B 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在射線 BD 上運(yùn)動(dòng).它們運(yùn) 動(dòng)的時(shí)間為 ts)(當(dāng)點(diǎn) P 運(yùn)動(dòng)結(jié)束時(shí),點(diǎn) Q 運(yùn)動(dòng)隨之結(jié)束).

1)若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,當(dāng) t=1 時(shí),ACP BPQ 是否全等, 并判斷此時(shí)線段 PC 和線段 PQ 的位置關(guān)系,請分別說明理由;

2)如圖(2),若ACAB,BDAB改為CAB=DBA=60°”,點(diǎn) Q 的運(yùn)動(dòng)速 度為 x cm/s,其他條件不變,當(dāng)點(diǎn) P、Q 運(yùn)動(dòng)到某處時(shí),有ACP BPQ 全等,求出相應(yīng)的 x、t 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點(diǎn),ABDB,BE平分∠ABC,交AC邊于點(diǎn)E,連接DE

1)求證:AEDE

2)若∠A100°,∠C50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】老師用個(gè)的小正立方體擺出一個(gè)立體圖形,它的正視圖如圖所示,且圖中任兩相鄰的小正立方體至少有一棱邊共享,或有一面共享.老師拿出一張的方格紙(如圖),請小榮將此個(gè)小正立方體依正視圖擺放在方格紙中的方格內(nèi),請問小榮擺放完后的左視圖有________種.(小正立方體擺放時(shí)不得懸空,每一小正立方體的棱邊與水平線垂直或平行)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,CDABC的中線,點(diǎn)ECD上,且∠AED=∠BCD

1)求證:AEBC

2)如圖2,連接BE,若ABAC2DE,∠CBE14°,則∠ACD的度數(shù)為   (直接寫出結(jié)果),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店經(jīng)銷的一種進(jìn)價(jià)為每件元的運(yùn)動(dòng)休閑杉熱銷.據(jù)市場調(diào)查分析,若每件按元銷售出件;銷售單價(jià)每漲價(jià)元,月銷售量就減少件.針對這種運(yùn)動(dòng)休閑杉的銷售情況,請解答以下問題:

設(shè)銷售單價(jià)為每件元,月銷售利潤為元,求之間的函數(shù)關(guān)系式(不必寫出的取值范圍);

商店想使月銷售利潤達(dá)到元,并使銷售量盡量大,請問該休閑杉的銷售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykxb與反比例函數(shù)yx0)交于A2,4),Ba,1),與x軸,y軸分別交于點(diǎn)C,D

1)直接寫出一次函數(shù)ykxb的表達(dá)式和反比例函數(shù)yx0)的表達(dá)式;

2)求證:ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(a≠0)是由拋物線y=﹣x2+x+2先作關(guān)于y軸的軸對稱圖形,再將所得到的圖象向下平移3個(gè)單位長度得到的,點(diǎn)Q1(﹣2.25,q1),Q2(1.5,q2)都在拋物線y=ax2+bx+c(a≠0)上,則q1,q2的大小關(guān)系是(  )

A. q1>q2 B. q1<q2 C. q1=q2 D. 無法確定

查看答案和解析>>

同步練習(xí)冊答案