【題目】由多項(xiàng)式乘法:(x+a)(x+b)=x2+(a+b)x+ab,將該式從右到左使用,即可得到“十字相乘法”進(jìn)行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)
示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)
(1)嘗試:分解因式:x2+6x+8=(x+)(x+);
(2)應(yīng)用:請(qǐng)用上述方法解方程:x2﹣3x﹣4=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a2a3=a6B.a6÷a2=a3C.(a2)3=a6D.a6﹣a2=a4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A、B兩地相距300千米,甲、乙兩輛汽車(chē)同時(shí)分別從A、B兩地相向而行,假設(shè)它們都保持勻速行駛,則它們各自到A地的距離s(千米)都是行駛時(shí)間t(時(shí))的一次函數(shù),圖象如圖所示,請(qǐng)利用所結(jié)合圖象回答下列問(wèn)題:
(1)甲的速度為 , 乙的速度為;
(2)求出:l1和l2的關(guān)系式;
(3)問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間兩車(chē)相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛(ài)、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營(yíng)市某中學(xué)利用周末時(shí)間開(kāi)展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長(zhǎng)為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)求該班的人數(shù);
(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù);
(4)小明和小麗參加了志愿服務(wù)活動(dòng),請(qǐng)用樹(shù)狀圖或列表法求出他們參加同一服務(wù)活動(dòng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)計(jì)算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017
(2)先化簡(jiǎn),再求值:(﹣a+1)÷﹣a,并從﹣1,0,2中選一個(gè)合適的數(shù)作為a的值代入求值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對(duì)稱軸是直線;③足球被踢出時(shí)落地;④足球被踢出時(shí),距離地面的高度是.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知射線OC上的任意一點(diǎn)到∠AOB的兩邊的距離都相等,點(diǎn)D、E、F分別為邊OC、OA、OB上,如果要想證得OE=OF,只需要添加以下四個(gè)條件中的某一個(gè)即可,請(qǐng)寫(xiě)出所有可能的條件的序號(hào) .
①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=
(3)思考:通過(guò)以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請(qǐng)用式子表示:
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請(qǐng)你寫(xiě)出來(lái),并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com